
FortSP: A Stochastic Programming Solver
Version 1.2

January 31, 2014

http://www.optirisk-systems.com

http://www.carisma.brunel.ac.uk

http://www.optirisk-systems.com
http://www.carisma.brunel.ac.uk

Version: 1.2

Prepared by
Victor Zverovich, Cristiano Arbex Valle, Francis Ellison and Gautam Mitra

OptiRisk Systems

Copyright c© 2013 OptiRisk Systems

DO NOT DUPLICATE WITHOUT PERMISSION
All brand names, product names are trademarks or registered trademarks of

their respective holders.

The material presented in this manual is subject to change without prior notice
and is intended for general information only. The views of the authors expressed

in this document do not represent the views and/or opinions of OptiRisk
Systems.

OptiRisk Systems
One Oxford Road

Uxbridge, Middlesex, UB9 4DA
United Kingdom

www.optirisk-systems.com
+44 (0) 1895 256484

2

http://www.optirisk-systems.com

Acknowledgements

We would like to acknowledge the following persons for their contribution to the software:

• Originally implemented by Dr Chandra Poojari and Dr Frank Ellison

• Subsequent extensive reengineering and updates made by Dr Victor Zverovich

We also acknowledge Dr Csaba I. Fábián for his contribution in respect of Level Decompo-
sition / Regularisation methods, and Dr Suvrajeet Sen. Finally, we thank Cristiano Arbex
Valle who is now the custodian of Fortsp.

Preface

FortSP is a large scale stochastic programming (SP) solver, which processes linear and
mixed integer scenario-based SP problems with recourse. It also supports scenario-based
problems with chance constraints and integrated chance constraints. Several different SP
algorithms are available for the solution, stochastic measures such as expected value of
perfect information (EVPI) and value of the stochastic solution (VSS) may be calculated,
and it can use CPLEX, FortMP or Gurobi as its embedded, underlying solver engine.

3

Contents

1 Introduction to FortSP 6
1.1 The Problem . 6
1.2 Command-line Interface . 6
1.3 System Architecture . 7
1.4 Data Provision . 8
1.5 Solution Methods . 8
1.6 External Solvers . 10

2 Mathematical Description of the Problem 11
2.1 Scenario Tree . 11
2.2 Two-stage Recourse Models . 11
2.3 Multi-stage Recourse Models . 13
2.4 Chance and Integrated Chance Constraints 14

3 Data Provision in SMPS 16
3.1 SMPS Input Format . 16
3.2 Core File and Random Parameter Values . 16
3.3 Time File . 17
3.4 Stoch File . 18
3.5 CHANCE and ICC Sections . 22
3.6 Objective Sense . 23

4 Data Provision in SAMPL 24
4.1 SAMPL Input Format . 24
4.2 The solve Statement . 24
4.3 The print Statement . 24
4.4 The write Statement . 24
4.5 The model and data Statements . 25
4.6 The option Statement . 25
4.7 Example . 25

5 Stochastic Programming Solution Methods (Continuous) 30
5.1 Deterministic Equivalent . 30
5.2 Cutting Plane (Benders) . 30
5.3 Generic L-Shaped Method . 30
5.4 The L-shaped method . 33
5.5 Regularisations . 33
5.6 Remarks . 37

6 Stochastic Integer Programming Solution Methods 38
6.1 Deterministic Equivalent . 38
6.2 Integer L-Shaped Method . 38
6.3 VNDS Heuristic . 38

7 Computing Stochastic Measures 41
7.1 Ancillary Algorithms - EV and WS . 41
7.2 Stochastic Measures - EVPI and VSS . 41
7.3 Algorithm Controls and Options . 41

4

8 External Solvers 45
8.1 Solvers Available . 45
8.2 Solver Options and Controls . 45

9 Solution File and Logging 48
9.1 Output Controls and Options . 48
9.2 Solution Format for Second Stage . 49

References 51

A Option Summary 54

B Solution Methods for Two-Stage Stochastic Programming Problems 60
B.1 Deterministic Equivalent . 60
B.2 Decomposition Methods . 61
B.3 Regularisation and trust region methods . 63
B.4 Regularised decomposition . 63
B.5 Regularisation: The level method . 64
B.6 Regularisation: Trust-region . 66

C Known Weaknesses 67

D Examples of Use 68

E Performance on Test Models 73
E.1 Experimental Setup . 73
E.2 Data Sets . 73
E.3 Computational Results . 76
E.4 Choice of IPM Solver . 81
E.5 Comments on Scale-Up Properties and on Accuracy 82

5

1 Introduction to FortSP

1.1 The Problem

FortSP is a solver for stochastic linear, and stochastic mixed integer programs. In such a
problem the decision variables are governed by linear constraints, with a linear expression for
the objective. Decision variables may be continuous, binary or general integer. Certain data
values will be unknown precisely, and only represented by a discrete range with a probability
given for each set of uncertain values. Knowledge of the random values will become known
in a stage-by-stage progression, and in recourse problems there will be decision variables
reserved for each stage which adapt the solution to unfolding events. User may add a rider
to some constraints that they need only hold with a certain probability in the case of chance
constraints or with a limit on expected of shortfall or surplus in the case of integrated chance
constraints.

Recourse Problems

A recourse problem is one in which only some decision variables must be fixed immediately.
Other variables are fixed in stages - those of one period taking into account the scenario
values that have become known in current and in previous stages, but with future stages
still unknown. These postponed decisions are known as recourse variables.

Single Stage

A single-stage problem is the one which has no recourse variables, i.e. all decision variables
must be defined without knowing the realisations of random values.

Chance and Integrated Chance Constraints

These appear as normal constraints, but whether satisfied or not is subject to the uncertainty.
Chance constraints need only hold with a certain probability in the final solution. Integrated
chance constraints limit the expected violation of the underlying inequalities. The expected
violation can be either expected shorfall or surplus depending on the type of the underlying
constraint. FortSP allows these types of constraints in single and two-stage problems only.

1.2 Command-line Interface

The fortsp executable provides a command-line interface (CLI) to all the features of FortSP.
It can be used to solve SP problems, compute stochastic measures and generate solution
reports.

Usage:

fortsp [options] <smps-basename>

fortsp [options] <core-file> <stoch-file> <time-file>

The first form can be used if the SMPS filenames have standard extensions namely cor for
the core file, sto for the stoch file and tim for the time file and they are otherwise equal.
The common part of the filenames without extensions is referred to as <smps-basename>.
Alternatively it is possible to specify all three filenames as arguments to the fortsp exe-
cutable.

6

CLI

FortSP
executable

API

FortSP
library

plugin interface nl interface

Gurobi
plugin

CPLEX
plugin

FortMP
plugin

AMPL
solvers

Gurobi
library

CPLEX
library

FortMP
library

Figure 1: FortSP system architecture

Examples:

fortsp sgpf5y3

fortsp fxm.cor fxm2-6.sto fxm2.tim

Options start with -- and may have an argument separated from the name with =, for
example, --solver=cplex. Both option names and arguments are case sensitive except
for the arguments that represent paths on a case-insensitive filesystem. For options that
take values 0 or 1 there is a shorthand notation --<option> in CLI which is equivalent
to --<option>=1, for example, --compute-evpi. Options are described in the subsequent
sections and the complete list can be found in Appendix A. If no options specified fortsp
uses the default algorithm which is problem-dependent to solve the given problem.

1.3 System Architecture

Figure 1 gives an architecture of the FortSP solver system.

Figure 2 is a simplified summary of the SP algorithm structure. The actual path taken by
execution depends on a variety of factors, for example:

• The model types chosen for solution (one or more of HN, EV, WS)

• The model types needed for stochastic measures (EVPI and VSS)

• The algorithm to solve the HN model

However there are various limitations to bear in mind

7

• The special cutting plane algorithm applies only to single-stage problems with ICC.
Other problems with chance and integrated chance constraints must be solved using
deterministic equivalent approach.

1.4 Data Provision

FortSP accepts input in the SMPS format directly and in the SAMPL format through a
separate SAMPL translator. It is also possible to use FortSP as a library with an application
programming interface (API) in C.

SMPS Format

FortSP uses a subset of SMPS (Birge et al., 1987), which is an early format for stochastic
programming problems. In this format three separate data files are provided:

• Core file: a generic presentation of the variables and constraints in MPS (MPSX)
layout. Data values need not feature any particular scenario, but every random data
element must be represented.

• Time file: specifying the subdivisions of the core file that belong to each stage.

• Stoch file: specifying every scenario, the values of random data, and probabilities.
Only discrete forms of random distributions are considered.

SAMPL Format

AMPL is an algebraic modelling language for mathematical programming problems. SAMPL
(Valente et al., 2009) is an extension of AMPL for stochastic programming. It allows rep-
resentation of SP problems using syntax similar to the algebraic notation which is more
economical and intelligible compared to SMPS. Unlike SMPS the whole problem can be
specified in one file or divided into several files according to user requirements. Through the
interactive environment SAMPL makes it easy to create or import models and data, specify
options, solve the problems and examine solutions.

FortSP Library Interface

FortSP provides a powerful C API which gives programmatic access to most of the function-
ality of the solver.

1.5 Solution Methods

A variety of stochastic algorithms are available and these can obtain solutions in one of the
following forms:

• ’Here and Now’ (HN) solution

• ’Wait and See’ (WS) solution

• ’Expected Value’ (EV) solution

8

SMPS input

Alg

#StagesICCCut

DetEq DetEqX Level?
Nested
Benders

Benders Level

EV

WS

EEV

EVPI
Compute

EVPI

VSS
Compute

VSS

End

Benders
Level

Deterministic
equivalent

Cutting-plane
for ICC

Ancillary

2 > 2

N Y

Figure 2: Simplified FortSP flowchart

9

HN solution provides the most exact answer to the original SP problem (also the most
difficult).

The FortSP solver supports the following classes of problems and algorithms:

• Two-stage linear SP recourse problems (Here and Now)

– Benders decomposition (L-shaped method)

– Variant of the level decomposition of Fábián and Szőke (2007)

– Trust region method of Linderoth and Wright (2003)

– Regularised decomposition

– Deterministic equivalent reformulation

• Two-stage mixed integer SP problems

– Integer L-shaped method

– Deterministic equivalent reformulation

• Multistage mixed integer SP problems

– Deterministic equivalent reformulation

• Multistage linear SP problems

– Nested Benders decomposition

– Deterministic equivalent reformulation

• Chance constraints

– Deterministic equivalent reformulation

• Integrated chance constraints

– Cutting-plane algorithm of Klein Haneveld and Vlerk (2002)

– Deterministic equivalent reformulation

The following stochastic measures may be derived from the solutions of HN, WS and EV
problems:

• The expected value of perfect information (EVPI)

• The value of the stochastic solution (VSS).

1.6 External Solvers

FortSP supports several external solvers that are invoked to optimise deterministic equiva-
lent problems or subproblems in decomposition methods. Those listed below are connected
through the efficient plug-in interface:

• FortMP (Ellison et al., 2008)

• CPLEX

• Gurobi

10

Figure 3: Scenario tree example

2 Mathematical Description of the Problem

Refer to Introduction to Stochastic Programming (Birge and Louveaux, 1997) for a detailed
problem statement and mathematical background.

2.1 Scenario Tree

Stochastic programming can handle large numbers of decision variables and capture their
complex interrelationships stated as constraints in algebraic form. The essence of SP is the
confluence of optimum decision-taking model with the modelling of the random parameter
behaviour. In order to model the behaviour of random parameter values we consider a
limited, discrete sample of the events that may occur between any two stages of the decision-
taking process, and this gives rise to a tree-like branching illustrated in figure 3.

Figure 3 illustrates the scenario tree of a 4-stage decision problem. Each node represents
an optimisation problem for the decisions to be taken there, and the bundle of arcs leading
from the node represents the sampled behaviour in that situation. By scenario is meant
the unfolding of all events (arcs) connecting the current (first) decision (root node) to some
decision in the final stage (leaf node). In general, decision tree analysis can handle only
small data sets, so for realistic problem sizes there is a need for multi-stage SP.

2.2 Two-stage Recourse Models

A two-stage planning horizon is one where immediate (Here and Now) decisions (x1) have to
be taken before all the problem elements have become known. Once this happens there are
further, second-stage decisions (x2) to be taken according to the newly discovered events.
After splitting the problem into known and unknown (uncertain) elements we have a first-
stage problem as follows:

11

Minimize cT1 x1 + θ(x1)
Subject to g1 ≤ A11x1 ≤ h1

l1 ≤ x1 ≤ u1

(1)

where the function θ is the expectation of second-stage utility, given the decisions x1 in the
first stage.

If we select a particular scenario, this utility function will be expressed as follows:

Minimize cT2 x2
Subject to g2 ≤ A21x1 + A22x2 ≤ h2

l2 ≤ x2 ≤ u2

(2)

without any further θ-function. Now since x1 is known, the second-stage problem for all
scenarios can be solved, from which we can derive the expectation of utility (probability-
weighted average of the minima), and this defines the θ-function in the first-stage objective.

To express this more exactly we assume the (hypothetical) existence of separate second-stage
decision variables x2s for each scenario s = 1, 2, . . . , S. Couple these with corresponding
values for the uncertain data, and the second-stage model for each scenario becomes:

Minimize cT2sx2s
Subject to g2s ≤ A21sx1 + A22sx2s ≤ h2s

l2s ≤ x2s ≤ u2s

(3)

So for the expectation we combine the probability-weighted minima of all the second-stage
models, and the entire problem becomes:

Minimize cT1 x1 +
S∑

s=1

ps(c
T
2sx2s)

Subject to g1 ≤ A11x1 ≤ h1
g2s ≤ A21sx1 + A22sx2s ≤ h2s,∀s = 1, . . . , S
l1 ≤ x1 ≤ u1
l2s ≤ x2s ≤ u2s,∀s = 1, . . . , S

(4)

where ps is the probability of scenario s. This formulation of the problem is known as the
Deterministic Equivalent (DEQ).

It was observed in the 50’s that the form (4) is precisely the form solvable with the dual of
Danzig-Wolfe decomposition, also known as Benders’ decomposition or the L-shaped method.
In this method a solution x1 to the model (1) allows dual-solutions of model (3) to be
calculated and applied to form an aggregated ’cut’, which is a constraint added to model (1)
- thus giving a new solution x1, and so an iterative process is developed. Theory shows that
the iterations converge to precisely the solution of the deterministic equivalent model (4).

It would seem simpler just to solve the DEQ model (4) were it not for the greatly increased
size of the problem. However, the DEQ is useful if the number of scenarios is fairly small.

12

There is a second form of the DEQ that is obtained by postulating separate stage 1 decision
variables for each scenario, and equating them by adding explicit constraints

x1s1 = x1s2

for all pairs of scenarios s1 and s2 (enough pairs to make all scenario-values the same). This
is known as DEQ with Explicit Non-Anticipativity (NA). The original form (4) is known as
DEQ with Implicit NA. For these large problems Interior Point Method (IPM) is usually
chosen in the solution. However, Implicit NA formulation may give difficulty with IPM
owing to column density, and this can be overcome in some cases by using Explicit NA.

2.3 Multi-stage Recourse Models

In a multi-stage (multi-period) planning horizon with more than two stages decisions must
be taken at each stage with knowledge only of the uncertainty in that stage and in previous
stages. We can easily extend the modelling shown in (1) and (3) by considering a θ-function
in all stages except the last. Thus stage 1 is:

Minimize cT1 x1 + θ1(x1)
Subject to g1 ≤ A11x1 ≤ h1

l1 ≤ x1 ≤ u1

(5)

The stages are now given by subscript t where t = 1, . . . , T , and so for an intermediate stage
t < T we can say:

Minimize cTt xt + θt(x1, x2, . . . , xt)
Subject to gt ≤ At1x1 + At2x2 + . . .+ Attxt ≤ ht

lt ≤ xt ≤ ut

(6)

with variables x1, x2, . . . , xt−1 known already. For the last stage we have:

Minimize cTTxT
Subject to gT ≤ AT1x1 + AT2x2 + . . .+ ATTxT ≤ hT

lT ≤ xT ≤ uT

(7)

with variables x1, x2, . . . , xT−1 known already. Note that each θ-function depends on the
decisions in that stage and in previous stages, up until the last stage, which has no θ-
function. The constraints of the t-th stage involve xt, xt−1, . . . , x1 (see 1).

The solution of such a model requires ’nesting’. A specific model corresponds to a specific
node of the scenario tree (exampled in figure 3). Hence to solve the sub-model for a given
node we need the values of decisions along the path leading up to that node, and all the
solutions to the sub-tree of nodes leading from it. Given a proposed solution for everything
up to stage T − 1, we can adjust the solution of stage T − 1 by applying 2-stage Benders to
each bundle of paths leading from stage T − 1. The same process applies to stage T − 2 by
nesting the last-stage 2-stage Benders inside to form a 3-stage Benders solver. And so on for

1In a ’Markovian’ situation the t-th stage involves only xt and xt−1. FortSP handles non-Markovian as
well as Markovian situations

13

the whole tree. Actually the multi-stage Benders algorithm is much faster, using the ’Fast
Forward, Fast Back’ algorithm described in (Birge and Louveaux, 1997) chapter 7.

Solving multi-stage problems with Deterministic Equivalent also involves nesting, and here
the nesting is in the formulation. Consider the (hypothetical) existence of scenario decision
variables for every sub-path on the scenario tree connecting one node to its parent, and
remember that the probability of that path is the sum of the probabilities of all paths leading
through it. Assemble the constraints for all the scenarios and combine in the objective the
sub-path-probability-weighted sum of all scenario objectives (too complicated to express
here in mathematical terminology). This gives the implicit NA version of the DEQ. For the
explicit NA version we consider separate variables for every scenario in every stage, and add
all the constraints needed to equate all the variables for different scenarios that lie along the
same sub-path everywhere in the tree.

2.4 Chance and Integrated Chance Constraints

In addition to multistage recourse problems described above, FortSP supports single and
two-stage problems with individual chance constraints and integrated chance constraints
(ICC). By a singe-stage SP problem we mean the one in which all decisions take place in the
first stage and then the random parameters realise. The difference from a two-stage problem
is that the latter has also a recourse action.

A probabilistic or chance constraint is a constraint that must hold with some minimum prob-
ability level. In the framework of model (2) an individual chance constraint corresponding
to i-th row (1 ≤ i ≤ m2) can be formulated as:

P{gi2 ≤ Ai
21x1 + Ai

22x2 ≤ hi2} ≥ α, (8)

where 0 < α < 1 is a reliability level, gi2 and hi2, denote i-th elements of vectors g2 and h2;
Ai

21 and Ai
22 denote i-th rows of matrices A21 and A22.

The chance constraint constraint (8) has the following deterministic equivalent form:

gi2s ≤ Ai
21sx1 + Ai

22sx2s +Mvs (s = 1, . . . , S)
Ai

21sx1 + Ai
22sx2s −Mws ≤ hi2s (s = 1, . . . , S)

vs ≤ zs (s = 1, . . . , S)
ws ≤ zs (s = 1, . . . , S)
S∑

s=1

pszs ≤ 1− α,

where M is a suitably chosen large constant, vs, ws and zs are additional binary variables.

Similarly, below is the formulation of an individual ICC if gi2 is infinite for all realisations of
random parameters:

E[(hi2 − Ai
21x1 − Ai

22x2)−] ≤ β, (9)

where β ≥ 0 and (a)− := max{−a, 0} is a negative part of a ∈ R.

14

The ICC (9) has the following deterministic equivalent form:

Ai
21sx1 + Ai

22sx2s − ws ≤ hi2s (s = 1, . . . , S)
S∑

s=1

psws ≤ β,

where ws are additional variables. Note that in the case of integrated chance constraints
introduced variables are continuous which makes deterministic equivalents of ICCs compu-
tationally more tractable than those of chance constraints.

If hi2 is infinite for all realisations of random parameters the constraint will look like:

E[(Ai
21x1 + Ai

22x2 − gi2)−] ≤ β,

The case of both gi2 and hi2 finite results in a special case of a joint ICC and is not currently
supported.

15

3 Data Provision in SMPS

3.1 SMPS Input Format

Whereas MPSX defines the format for LP data input, Stochastic MPS (SMPS) defines the
input format for stochastic programming problems. FortSP implements the most important
provisions of SMPS which is described by Birge et al. (1987). Since the solver is initially
designed for use within the SPInE system its stochastic input fulfils the requirements of
models generated by SPInE, and other provisions of SMPS are not supported in full. SPInE
generates solver stochastic data in the form of discrete scenarios, and FortSP supports this
form and also discrete blocks form and discrete independent form.

Three input files are required in order to specify a stochastic problem:

• Core file which is the fundamental problem template in the form of an LP problem
using the MPSX format

• Time file specifying which rows and columns of the core-file belong to which time stage

• Stoch file specifying the alternative values taken by each random parameter value in
the core file

The user may specify precise names for the input files or may give the basename - or ’Generic’
name - of these files so that extensions are appended automatically. Denoting a base name
by <problem> the resulting filenames are:

<problem>.cor for core file
<problem>.tim for time file
<problem>.sto for stoch file

3.2 Core File and Random Parameter Values

The core file expresses a linear programming problem or linear mixed integer problem in the
format known as MPSX, familiar to the users of LP solvers and described in the manuals
of many of such system, for example, FortMP (Ellison et al., 2008). In this format the file
is divided into ROWS, COLUMNS, RHS, RANGES and BOUNDS sections, and data records have a
fixed format as follows:

Field 1. Positions 2-3 (code)
Field 2. Positions 5-12 (1st name field)
Field 3. Positions 15-26 (2nd name field)
Field 4. Positions 30-37 (1st numeric field)
Field 5. Positions 40-47 (3rd name field)
Field 6. Positions 50-61 (2nd numeric field)

This layout is also used for data in the time and stoch files described below.

In the stochastic model a number of scalars will have uncertain values - they are denoted
here as random parameter values. They may be anywhere in the core file other than in the
ROWS section. Each random parameter value must have a representative, finite value assigned
to it in the core problem, and this value must be recognisable by the input. It may not be

16

zero in the COLUMNS or the RANGES section, or left as infinite in the BOUNDS section. However
it does not have to be a value corresponding to any particular scenario.

If the time file is in implicit format then both constraints and variables must be grouped
according to the stage at which they apply. These separate groups are to be in the order of
time stage in the core file (constraints in the ROWS section and variables in the COLUMNS sec-
tion). As a result of this ordering the constraint matrix should have a lower block triangular
form, with blocks for each stage.

MIP in the form of binary or integer descriptions may be applied to any decision variable
(SOS and semi-continuous are not supported). However if it applies to variables other than
the first here-and-now stage then the HN model must be solved using deterministic equivalent
method - Benders’ decomposition would not be suitable.

3.3 Time File

The time file in implicit format specifies the first member of each stage grouping in the
constraints and variables of the core problem (hence the need to group these items by stage).
The first line is as follows:

Positions 1-4 Keyword TIME

Field 3 (15-22) Problem name

This is followed by the period header line as follows:

Positions 1-7 Keyword PERIODS

Field 3 (15-22) Keyword IMPLICIT (optional)

After this one line is included for each stage as follows:

Field 2 (5-12) Starting variable name
Field 3 (15-22) Starting constraint name
Field 5 (40-47) Stage name

Time stages are indexed 1, 2, . . . with stage number 1 being the first, here-and-now stage.

Finally the data ends with the following line:

Positions 1-6 Keyword ENDATA

The following is an example:

TIME EXAMPLE

PERIODS IMPLICIT

C1 R1 STAGE1

C6 R3 STAGE2

C8 R19 STAGE3

ENDATA

Note that in place of R1 it is possible to use the objective row name. The objective row is
moved by the input into the first row position, wherever it is found in the data.

17

3.4 Stoch File

All random data and the discrete distributions are specified in the stoch file. The first line
is as follows:

Positions 1-5 Keyword STOCH

Field 3 (15-22) Problem name

This is followed by a header line that specifies the form of data input as follows:

Positions 1 onwards Keyword defining the data form as one of
INDEP BLOCKS SCENARIOS

CHANCE ICC

Field 3 (15-22) Keyword DISCRETE

After this header line there are data-lines as described below and the file is terminated as
before:

Positions 1-6 Keyword ENDATA

Sample values for random parameter values are presented in the stoch file in the same form
as they appear in the core file, that is:

Random parameter value in section:

Field COLUMNS RHS RANGES BOUNDS

1: 2-3 Bound type
2: 5-12 Column name Vector name Vector name Vector name
3: 15-22 Row name Row name Row name Column name
4: 25-36 Sample value Sample value Sample value Sample value
5: 40-47 2nd row name 2nd row name 2nd row name
6: 50-61 Sample value Sample value Sample value

Fields 5 and 6 have a different use for INDEP-form data (see below), and otherwise can only
be used for random parameter values with the same description in fields 1 and 2.

Stochastic Data Form INDEP

INDEP is used when each separate random parameter value has an independent distribution.
Scenarios are built by selecting one possibility for each random parameter value, the set of
all scenarios is then formed by taking all combinations of possible selections.

Each INDEP data line can describe only one random parameter value as follows:

Fields 1-4 As described above
Field 5 (40-47) Stage name
Field 6 (50-61) Probability value of the sample (must sum to 1 for each random

parameter value)

Sequence should be according to time stage, and with separate samples of the same random
parameter value collected into consecutive lines. The following is an example:

18

STOCH EXAMPLE

INDEP DISCRETE

C6 OBJ 2.5 STAGE2 0.5

C6 OBJ 3.0 STAGE2 0.5

C6 R3 5.0 STAGE2 0.33

C6 R3 5.5 STAGE2 0.67

C8 R19 1.0 STAGE3 0.25

C8 R19 2.0 STAGE3 0.25

C8 R19 3.0 STAGE3 0.5

ENDATA

The above example has 12 (2× 2× 3) scenarios, illustrated in the following table:

Base Value of

Scen Scen Stage (C6,OBJ) (C6,R3) (C8,R19) Probability

1 core 2 2.5 5.0 1.0 0.04125
2 1 3 - - 2.0 0.04125
3 1 3 - - 3.0 0.08250
4 1 2 - 5.5 1.0 0.08375
5 4 3 - - 2.0 0.08375
6 4 3 - - 3.0 0.16750
7 1 2 3.0 5.0 1.0 0.04125
8 7 3 - - 2.0 0.04125
9 7 3 - - 3.0 0.08250

10 7 2 - 5.5 1.0 0.08375
11 10 3 - - 2.0 0.08375
12 10 3 - - 3.0 0.16750

Here the Base Scen column is the scenario containing the default values for any unstated
random parameter values. The first scenario is always based on the core problem and
specifies values for all random parameter values. The Stage column states the stage at
which a difference appears from the base.

Stochastic Data Form BLOCKS

The nature of this form is very similar to INDEP, except that individual independent random
parameter values give place to independent blocks (or sets) of random parameter values.
The stage number and probability distribution become properties of the block rather than
the individual random parameter value. Each new block and each new set of block values is
introduced with a header line as follows:

Field 1 (2-3) Keyword BL

Field 2 (5-12) Block name
Field 3 (15-22) Stage name
Field 4 (25-36) Probability value of the sample (must sum to 1 over the samples

of each block)

19

Blocks with the same name should be grouped together.

Values for the members of each block are entered in a way similar to INDEP data, except
that fields 5 and 6, not being required for stage and probability, may contain a second data
entry for fields 3 and 4 as tabled above in the general stoch file description.

The following is an example:

STOCH EXAMPLE

BLOCKS DISCRETE

BL BLOCK1 STAGE2 0.5

C6 OBJ 2.5 R3 5.0

BL BLOCK1 STAGE2 0.5

C6 OBJ 3.0 R3 5.5

BL BLOCK2 STAGE3 0.25

C8 R19 1.0

RHS R19 100.0

BL BLOCK2 STAGE3 0.25

C8 R19 2.0

RHS R19 200.0

BL BLOCK2 STAGE3 0.5

C8 R19 3.0

ENDATA

This example gives rise to scenarios in the same manner as before, illustrated as follows:

Value of

Scen Base Stage (C6,OBJ) (C8,R19) Probability
Scen (C6,R3) (RHS,R19)

1 Core 2 2.5 1.0 0.125
5.0 100.0

2 1 3 - 2.0 0.125
200.0

3 2 3 - 3.0 0.250
-

4 1 2 3.0 1.0 0.125
5.5 100.0

5 4 3 - 2.0 0.125
200.0

6 5 3 - 3.0 0.250
-

Note that block samples do not have to restate values in the block if they duplicate the
previous sample. Hence the base for samples other than the first of a block is the previous
sample. So in the above example scenarios 3 and 6 assign value 200.0 to (RHS,R19).

20

Stochastic Data Form SCENARIOS

Scenarios have been introduced in the examples above. It may be observed that the branching
of scenarios from each other (i.e. the base scenario connection) forms an event tree in which
decisions may be taken at the nodes. The tree for the INDEP example above looks as follows:

Stage 1 Stage 2 Stage 3 Scenarios

12

11

10

9

8

7

6

5

4

3

2

1

In this diagram each scenario is represented by a full path through the nodes from left to
right.

Scenario-form data is prepared from such a tree, which should be known directly or implicitly.
For each scenario it is only necessary to enter the information that differs from its base
scenario - that is the earlier scenario from which it branches. Where several branches issue
from one node (to the right) the later scenarios may be considered as branching from any
earlier scenario in that bundle. Thus for example:

Scenario 10 could branch from 1, 4 or 7

Scenario 6 could branch from 4 or 5

Scenario 1 must always branch from the core problem (and provide values for all the random
parameter values).

Each scenario is preceded in the stoch file by a scenario header line as follows:

21

Field 1 (2-3) Keyword SC

Field 2 (5-12) Scenario name
Field 3 (15-22) Should contain ROOT for scenario 1. For other scenarios enter the

name of the base scenario
Field 4 (25-36) Probability value of the scenario (must sum to 1 over all scenar-

ios)
Field 5 (40-47) Stage index with optional prefix

Data lines for scenarios follow the layout tabled in the general stoch file description.

Here is how the BLOCKS example can be presented in SCENARIOS form:

STOCH EXAMPLE

SCENARIOS DISCRETE

SC SCEN1 ROOT 0.125 STAGE1

C6 OBJ 2.5 R3 5.0

C8 R19 1.0

RHS R19 100.0

SC SCEN2 SCEN1 0.125 STAGE3

C8 R19 2.0

RHS R19 200.0

SC SCEN3 SCEN2 0.250 STAGE3

C8 R19 3.0

SC SCEN4 SCEN1 0.125 STAGE2

C6 OBJ 3.0 R3 5.5

C8 R19 1.0

RHS R19 100.0

SC SCEN5 SCEN4 0.125 STAGE3

C8 R19 2.0

RHS R19 200.0

SC SCEN6 SCEN5 0.250 STAGE3

C8 R19 3.0

ENDATA

3.5 CHANCE and ICC Sections

Data for chance constraints and ICC are presented on the STOCH file in additional sections
preceding the random data.

CHANCE Section

Chance constraints can be represented in the stoch file using the CHANCE section where the
reliability parameters α are supplied (see section 2.4). The constraints themselves are defined
in the core file and the distributions of their stochastic elements are defined in extra sections
of the stoch file.

After a section header consisting of a single keyword CHANCE in position 1 each line describes
a single chance constraint and has the following structure:

22

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field 2 (5-12) Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Reliability parameter α, see section 2.4

Example:

CHANCE

G CC1 R1 0.95

L CC1 R2 0.10

The CHANCE section allows one or more groups of chance constraints to be defined. In the
above example, the name of the group is CC1. FortSP uses the first group and ignores all
others.

ICC Section

The ICC section is very similar to the CHANCE section. It starts with the keyword ICC followed
by the lines in the form described below:

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field 2 (5-12) Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Parameter β for ICC, see section 2.4

Example:

ICC

L ICC1 R8 10.0

The ICC section allows one or more groups of ICCs to be defined. In the above example, the
name of the group is ICC1. FortSP uses the first group and ignores all others.

3.6 Objective Sense

SMPS doesn’t provide a way to specify the objective sense. This can be done with the
following option instead.

CLI Name --smps-obj-sense

SAMPL Name smps obj sense

Description The sense of optimisation for SMPS problems
Value minimize or maximize
Default minimize

23

4 Data Provision in SAMPL

The input format used in the AMPLDev modelling system is Stochastic AMPL, or SAMPL,
which is described in details in SAMPL/SPInE User Manual (Valente et al., 2008). SAMPL
is an extension of the AMPL modelling language for stochastic programming. It has many
advantages over the legacy SMPS format and therefore it is recommended to use SAMPL for
creating new models. The SAMPL translator fully supports FortSP and can export problem
instances to SMPS for compatibility with other solvers.

4.1 SAMPL Input Format

Current version of the SAMPL translator accepts only two-stage SP problems expressed in a
subset of the language. The syntax can be inferred from the example in Section 4.7. Details
of modelling with SAMPL can be found elsewhere (Valente et al., 2008), this section only
describes the scripting features that can be used to control FortSP and present the results.

4.2 The solve Statement

The solve statement instantiates the current problem and solves it.

Syntax

solve-stmt :
solve ;

4.3 The print Statement

The print statement evaluates each expression in the list and prints the result to the stan-
dard output.

Syntax

print-stmt :
print [indexing :] expr-list ;

expr-list :
expr
expr-list , expr

Example: print {p in Products}: sell[p];

4.4 The write Statement

The write statement writes the current problem in the SMPS form.

Syntax

write-stmt :
write sfilename ;

Example: write sout;

24

4.5 The model and data Statements

The model and data statements have two forms. The one without arguments switches the
current mode. For example the statement data; enters the data mode. The second form
which takes a filename argument translates the specified file.

Syntax

model-stmt :
model [filename] ;

data-stmt :
data [filename] ;

4.6 The option Statement

The option statement sets and/or prints the option values.

Syntax

option-stmt :
option fortsp options option-list ;

option-list :
option
option-list , option

option:
name [expr]

Here name is an option name and expr is an optional expression of compatible type. If the
expression is not specified the option value is printed. Otherwise the expression is evaluated
and the result is assigned to the option. Example: option solver cplex, lp alg dual;

4.7 Example

As an example let’s consider the farmer’s problem from Introduction to Stochastic Program-
ming (Birge and Louveaux, 1997).

A European farmer has 500 acres of land where he plans to grow wheat, corn, and sugar
beets. He wants to decide how much land to devote to each crop in order to maximize profit
and produce enough grain to feed his cattle. The farmer knows that at least 200 tons (T)
of wheat and 240 T of corn are needed for cattle feed. All that remains after satisfying the
feeding requirements is sold. Selling and purchase prices as well as planting costs are given
in the following table.

25

Wheat Corn Sugar Beets

Planting cost ($/acre) 150 230 260
Selling price ($/T) 170 150 36 under 6000 T

10 above 6000 T
Purchase price ($/T) 238 210 -
Min. requirement (T) 200 240 -

Note that sugar beet has two selling prices because the European Commission imposes a
quota on its production. Any amount above the quota is sold at a lower price.

The uncertainty in the problem comes from the weather conditions that affect yields. In this
problem three possible scenarios are considered. The yields in tons per acre are given below
for each crop and scenario.

Wheat Corn Sugar Beets

Above 2.0 2.4 16.0
Average 2.5 3.0 200.0
Below 3.0 6.0 24.0

Here is a SAMPL formulation of the model:

set Crops;

scenarioset Scenarios;

probability P{Scenarios};

tree Tree := twostage;

param TotalArea; # acre

random param Yield{Crops, Scenarios}; # T/acre

param PlantingCost{Crops}; # $/acre

param SellingPrice{Crops}; # $/T

param ExcessSellingPrice; # $/T

param PurchasePrice{Crops}; # $/T

param MinRequirement{Crops}; # T

param BeetsQuota; # T

Area in acres devoted to crop c

var area{c in Crops} >= 0;

Tons of crop c sold (at favourable price in case of beets)

under scenario s

var sell{c in Crops, s in Scenarios} >= 0, suffix stage 2;

Tons of sugar beets sold in excess of the quota under

scenario s

26

var sellExcess{s in Scenarios} >= 0, suffix stage 2;

Tons of crop c bought under scenario s

var buy{c in Crops, s in Scenarios} >= 0, suffix stage 2;

maximize profit: sum{s in Scenarios} P[s] * (

ExcessSellingPrice * sellExcess[s] +

sum{c in Crops} (SellingPrice[c] * sell[c, s] -

PurchasePrice[c] * buy[c, s]) -

sum{c in Crops} PlantingCost[c] * area[c]);

s.t. totalArea: sum {c in Crops} area[c] <= TotalArea;

s.t. requirement{c in Crops, s in Scenarios}:

Yield[c, s] * area[c] - sell[c, s] + buy[c, s]

>= MinRequirement[c];

s.t. quota{s in Scenarios}: sell[’beets’, s] <= BeetsQuota;

s.t. beetsBalance{s in Scenarios}:

sell[’beets’, s] + sellExcess[s]

<= Yield[’beets’, s] * area[’beets’];

The data for the farmer’s problem are as follows:

data;

set Crops := wheat corn beets;

set Scenarios := below average above;

param TotalArea := 500;

param P :=

below 0.333333

average 0.333333

above 0.333333;

param Yield:

below average above :=

wheat 2.0 2.5 3.0

corn 2.4 3.0 3.6

beets 16.0 20.0 24.0;

param PlantingCost :=

wheat 150

corn 230

beets 260;

27

param SellingPrice :=

wheat 170

corn 150

beets 36;

param ExcessSellingPrice := 10;

param PurchasePrice :=

wheat 238

corn 210

beets 100; # Set to a high value to simplify the objective

param MinRequirement :=

wheat 200

corn 240

beets 0;

param BeetsQuota := 6000;

Finally the script file needs to be provided which loads model and data files, solves the
problem and retrieves the optimal value and solution. Due to the flexibility of the AMPL
language SAMPL is based on, it is possible to combine model, data and script in one file
which can be convenient in some cases. However, in general it is not recommended since it
makes more difficult to use the same model with different data sets.

Let’s assume that the model and data are stored in the files farmer.mod and farmer.dat.
The following script loads these files, solves the problem and prints the results:

Read the model and data.

model farmer.mod;

data farmer.dat;

Set options.

option solver fortsp;

Instantiate and solve the problem.

solve;

Print the results.

print ’Optimal value =’, profit;

print;

print ’First-stage solution:’;

print {c in Crops}: ’area[’, c, ’] =’, area[c], ’\

’;

print ’totalArea =’, totalArea.body;

Running sampl with the command sampl <script filename> will produce the following

28

output:

...

optimal solution; objective 108390.00000000003

Optimal value = 108390.00000000003

First-stage solution:

area[wheat] = 170.00000000000003

area[corn] = 79.99999999999997

area[beets] = 250.00000000000003

totalArea = 500

29

5 Stochastic Programming Solution Methods (Contin-

uous)

5.1 Deterministic Equivalent

The simplest solution approach is to formulate a deterministic equivalent of the SP problem
and use a linear programming (LP) solver to optimise it. FortSP fully supports automatic
formulation of deterministic equivalent problems either with implicit or with explicit non-
anticipativity. This method is feasible and sometimes advantageous especially if the number
of scenarios is relatively small. A more detailed explanation of the Deterministic Equivalent
can be found on appendix B, section B.1.

FortSP can also formulate deterministic equivalents of two-stage problems with individual
chance constraints and integrated chance constraints.

5.2 Cutting Plane (Benders)

The following decomposition algorithms are available in FortSP for solving the Here-and-Now
(HN) problem:

• Benders’ decomposition - L-shaped method

• Level decomposition variant

• Nested Benders’ decomposition

The first two methods are applicable for two-stage problems and the last allows solving
multi-stage problems. These algorithms take advantage of a specific structure of stochastic
programming problems and make it possible to solve problems with large number of scenar-
ios. The level decomposition applies a regularisation that is particularly effective for larger
numbers of scenarios. For the interested reader, section B.2 on appendix B presents a more
detailed mathematical background on decomposition methods.

In addition to finding here-and-now values for decision variables in the first stage the system
may extend this to recourse values for the various scenarios in future stages.

For integrated chance constraints an efficient cutting-plane algorithm (Klein Haneveld and
Vlerk, 2002) is provided.

In the stochastic Bender’s decomposition and its variants, a variable θ is used as an appro-
priate approximation of the second stage value function. In certain cases the addition of
optimality cuts (refer to Birge and Louveaux (1997)) creates an unbounded situation as θ
is a free variable. As an ad-hoc fix for this a large negative lower bound is applied to θ,
which is retained until no longer needed. If not large enough then the algorithm may halt
prematurely with a cycling status. It may then be possible to obtain the correct solution by
specifying a lower bound for θ with the --theta-lower option.

30

5.3 Generic L-Shaped Method

Consider the two-stage stochastic programming problem

minimize cTx+ E[Q(x, ω)]
subject to Ax ≥ b,

x ∈ Rn1
+ ,

(10)

where Q(x, ω) is the value function of the recourse problem

minimize q(ω)Ty
subject to T (ω)x+W (ω)y ≥ h(ω),

y ∈ Rn2
+ .

(11)

Assume that the vector of random coefficients has finite discrete distribution with S reali-
sations (scenarios) ω1, ω2, . . . ωS and probability P (ωi) = pi, i = 1, 2, . . . , S.

Let Q(x) denote the objective in (10):

Q(x) = cTx+ E[Q(x, ω)]

This section describes a generic L-shaped algorithm that is used to implement various specific
L-shaped based methods such as regularised decomposition. The extensibility is achieved by
allowing to redefine certain procedures. The following algorithms were implemented based
on this generic framework:

• The L-shaped method

• The multicut L-shaped algorithm

• L-shaped algorithm with regularisation by the level method

• Trust region method based on l∞ norm

• Regularised decomposition

5.3.1 Scenario clustering

Consider the multicut version of the L-shaped method where scenarios are divided into C
clusters of sizes S1, S2, . . . , SC . The master problem at iteration k is

minimize cTx+
C∑

j=1

θj

subject to Ax ≥ b,
Dkx ≥ dk,

F k
j x+ θje ≥ fk

j , j = 1, 2, . . . , C,
x ∈ Rn1

+ ,θ ∈ RC ,

(12)

where Dkx ≥ dk are feasibility cuts, F k
j x+θje ≥ fk

j are optimality cuts and e = (1, 1, . . . , 1).

Algorithm 2 divides scenarios into clusters of approximately the same size. It takes an input
parameter r ∈ [0, 1] which denotes the cluster size relative to the number of scenarios.

31

Algorithm 1 Generic L-shaped method

choose iteration limit kmax ∈ Z+

choose relative stopping tolerance ε ∈ R+

solve the expected value problem to get a solution x0 (initial iterate)
k ← 0, Q∗ ←∞
initialise()
while time limit is not reached and k < kmax do

solve the recourse problems (11) with x = xk and compute Q(xk)
if all recourse problems are feasible then

add C optimality cuts
if Q(xk) < Q∗ then
Q∗ ← Q(xk)
x∗ ← xk

end if
else

add a feasibility cut
end if
get-next-iterate()
k ← k + 1

end while

Here initialise and get-next-iterate are procedures to be defined by specific methods.

Algorithm 2 Scenario clustering
s← 0, i← 1
while s < S do

Si ←
⌈
imax

(
S

d1/r − 0.5e
, 1

)
− s− 0.5

⌉
s← s+ Si

i← i+ 1
end while

32

5.4 The L-shaped method

When the relative cluster size r = 1, which is the default, there is only one cluster of size S
resulting in the original L-shaped method of Van Slyke and Wets (1969). r = 0 results in the
multicut version (Birge and Louveaux, 1988) with each cluster consisting of a single scenario.
Intermediate values are also possible, for example if S = 7 and r = 1

3
, then scenarios will be

divided into 3 clusters of sizes 2, 3 and 2.

To get the classic L-shaped method the initialise and get-next-iterate procedures are defined
as shown in Algorithms 3 and 4 respectively. The second check of optimality condition
in Algorithm 4 ensures that the recouse problems are not solved unnecessarily when the
optimality gap became acceptable due to increase in the lower bound.

Algorithm 3 initialise (original L-shaped)

Q0 ← −∞

Algorithm 4 get-next-iterate (original L-shaped)

if (Q∗ −Qk)/(|Q∗|+ 10−10) ≤ ε then
stop

end if
solve the master problem (12) to get an optimal solution (xk+1,θk+1) and the optimal
objective value Qk+1; xk+1 is the next iterate
if (Q∗ −Qk+1)/(|Q∗|+ 10−10) ≤ ε then

stop
end if

5.5 Regularisations

In the following subsections we briefly discuss variations of the L-Shaped method.

5.5.1 L-shaped method with regularisation by the level method

Regularisation by the level method (Lemaréchal et al., 1995; Fábián and Szőke, 2007) is
achieved by defining the initialise and get-next-iterate procedures according to Algorithms 5
and 6. For more details see appendix section B.5

Algorithm 5 initialise (level regularisation)

choose λ ∈ (0, 1)
Q0 ← −∞

5.5.2 Trust region method based on the infinity norm

Algorithms 7 and 8 show definitions of the procedures for the l∞ trust region method (Lin-
deroth and Wright, 2003). See section B.6 for more details.

5.5.3 Regularised decomposition

Algorithms 9 and 10 show definitions of the procedures for the regularised decomposition
method with dynamic adaptation of σ as described by Ruszczyński and Świȩtanowski (1997).
This method is explained is section B.4

33

Algorithm 6 get-next-iterate (level regularisation)

if (Q∗ −Qk)/(|Q∗|+ 10−10) ≤ ε then
stop

end if
solve the master problem (12) to get an optimal solution (x′,θ′) and the optimal objective
value Qk+1.
if (Q∗ −Qk+1)/(|Q∗|+ 10−10) ≤ ε then

stop
end if
solve the projection problem:

minimize ‖x− x′‖2

subject to cTx+
C∑

j=1

θj ≤ (1− λ)Qk+1 + λQ∗

Ax ≥ b,
Dkx ≥ dk,

F k
j x+ θje ≥ fk

j , j = 1, 2, . . . , C,
x ∈ Rn1

+ ,θ ∈ RC ,

(13)

let (xk+1,θk+1) be an optimal solution of the projection problem; then xk+1 is the next
iterate

Algorithm 7 initialise (trust region method)

choose ξ ∈ (0, 1/2) and maximum trust region radius ∆hi ∈ [1,∞)
choose initial radius ∆ ∈ [1,∆hi]
counter ← 0
Q̂←∞

34

Algorithm 8 get-next-iterate (trust region method)

if Q̂ <∞ then
if Q̂−Q(xk) ≥ ξ(Q̂−Qk) then

if Q̂−Q(xk) ≥ 0.5(Q̂−Qk) and ‖xk − x̂‖∞ = ∆ then
increase the radius:
∆← min(2∆,∆hi)

end if
set a reference point:
x̂← xk

Q̂← Q(x̂)
counter ← 0

else
ρ← −min(1,∆)(Q̂−Q(xk))/(Q̂−Qk)
if ρ > 0 then

counter ← counter + 1
end if
if ρ > 3 or (counter ≥ 3 and ρ ∈ (1, 3]) then

decrease the radius:
∆← ∆/min(ρ, 4)
counter ← 0

end if
end if

else
set a new reference point:
x̂← xk

Q̂← Q(x̂)
end if
solve the master problem with additional trust region bounds:

minimize cTx+
C∑

j=1

θj

subject to Ax ≥ b,
Dkx ≥ dk,

F k
j x+ θje ≥ fk

j , j = 1, 2, . . . , C,
x ∈ Rn1

+ ,θ ∈ RC ,
x̂−∆ ≤ x ≤ x̂+ ∆.

(14)

let (xk+1,θk+1) be an optimal solution of the problem (14) and Qk+1 be its optimal value
if |Q̂−Qk+1|/(|Q̂|+ 10−10) ≤ ε then

stop
end if

Algorithm 9 initialise (regularised decomposition)

x̂← x0

Q0 ←∞
choose σ and γ

35

Algorithm 10 get-next-iterate (regularised decomposition)

if k = 0 or |Q(xk)−Qk|/(|Q(xk)|+ 10−10) then
set a new reference point:
x̂← xk

Q̂← Q(x̂)
end if
if Q(xk) <∞ then

if Q(xk) > γQ̂+ (1− γ)Qk then
σ ← σ/2

else if Q(xk) < (1− γ)Q̂+ γQk then
σ ← 2σ

end if
end if
solve the master problem with an additional quadratic term in the objective:

minimize cTx+
C∑

j=1

θj +
1

2σ
‖x− x̂‖2

subject to Ax ≥ b,
Dkx ≥ dk,

F k
j x+ θje ≥ fk

j , j = 1, 2, . . . , C,
x ∈ Rn1

+ ,θ ∈ RC ,

(15)

let (xk+1,θk+1) be an optimal solution of the problem (15) and Qk+1 = cTxk+1 +
C∑

j=1

θk+1
j

if |Q̂−Qk+1|/(|Q̂|+ 10−10) ≤ ε then
stop

end if
delete constraints that have corresponding dual variables zero in the solution of (15),
keeping the last C added constraints intact

36

5.6 Remarks

Preliminary experiments showed that keeping all the cuts in regularised decomposition,
while resulting in smaller number of iterations, increases overall solution time due to master
problem becoming much more difficult to solve. At the same time the trust region method
based on l∞ norm is exposed to this issue to a less extent and therefore no cut deletion was
done.

The default relative stopping tolerance ε = 10−5 is used for the L-shaped method with and
without regularisation by the level method. The stopping criteria in trust region algorithm
and regularised decomposition are different because these methods do not provide global
lower bound. Therefore ε is set to a lower value of 10−6 for them.

Default values for other parameters are listed below.

• L-shaped algorithm with regularisation by the level method:
λ = 0.5,

• Trust region method based on l∞ norm:
∆ = 1,∆hi = 103, ξ = 10−4,

• Regularised decomposition:
σ = 1, γ = 0.9.

37

6 Stochastic Integer Programming Solution Methods

6.1 Deterministic Equivalent

The simplest solution approach is to formulate a deterministic equivalent of the SIP problem
and use a Integer Programming (IP) solver to optimise it via a generic Branch-and-Bound
algorithm. FortSP fully supports automatic formulation of deterministic equivalent problems
either with implicit or with explicit non-anticipativity. This method is feasible and sometimes
advantageous especially if the number of scenarios is relatively small.

FortSP can also formulate deterministic equivalents of two-stage problems with individual
chance constraints and integrated chance constraints.

6.2 Integer L-Shaped Method

The Integer L-shaped method is an algorithm for solving two-stage SIP problems with com-
plete recourse, which is similar to the continuous L-Shaped method for stochastic linear
programming. The method operates on the current problem based on the first-stage sub-
problem with added feasibility and optimality cuts. The current problem at iteration k can
be defined as follows:

minimize cTx+ θ
subject to Ax = b,

Dkx ≥ dk,
Ekx+ θ ≥ ek
x ∈ Rn1

+ ,θ ∈ R,

(16)

where Dkx ≥ dk are the feasibility cuts and Ekx+θ ≥ ek are the optimality cuts. The main
difference of this algorithm from its continuous counterpart is branching on the first-stage
binary variables which results in a branch and cut procedure. As in the continuous L-shaped
method, the second-stage subproblems are solved only during the evaluation of the expected
recourse function when computing the optimality cuts. In this way both decomposition of
stages and decomposition of scenarios are achieved.

The integer L-shaped method is applicable to a wide range of SIP problems with binary first
stage, continuous second stage and complete fixed recourse. A restricted class of problems
with discrete second-stage variables is supported. The flowchart in Figure 4 outlines the
Integer L-Shaped method.

6.3 VNDS Heuristic

Variable Neighbourhood Decomposition Search (VNDS) is a two-level variant of the variable
neighbourhood search heuristic, based upon the decomposition of the problem. Introducing
neighbourhood structures into the solution space of a SIP makes the application of VNDS
possible as a solution method for the first stage problem. The heuristic result can be used
to speed up the overall solution process for a given two-stage SIP problem.

By fixing a portion of variables in the first-stage problem of a given two-stage SIP problem,
an easier problem is obtained, which can usually be solved faster than the original problem.
Ideally, if all the variables from the first-stage problem are fixed, then only solving the

38

Initialise

Node queue
is empty?

Stop

Select node,
solve LP

Branch

Status
is ...

Fathom

Compute Q̃(x∗),
U ← min(U, cTx∗ + Q̃(x∗))

θ ≥
Q̃(x∗)?

Add optimality cut, keep node

N

Y

Optimal &
fractional

Optimal & integer (x∗ - opt. solution)

Infeasible

Y

N

Figure 4: Flowchart of the integer L-shaped method within a branch and cut framework

second-stage problems of a specific block-structure remains. By systematically changing the
number of variables to be fixed, a VNDS scheme for two-stage SIP problem is obtained.
The general pseudo-code of the VNDS heuristic for the two-stage SIP problem is given in
Algorithm 11. Input parameters for the algorithm are an input two-stage SIP problem P
and initial integer feasible solution x∗.

39

Algorithm 11 VNDS for two-stage SIP

1: Given: SIP problem instance P , integer feasible solution x∗,
stopping tolerance ε

2: L← −∞, U ← f(x∗)
3: while time limit is not reached do
4: Solve the LP relaxation of P to obtain the solution x̄
5: L← f(x̄)
6: if x̄ ∈ {0, 1}r1 × Rn1−r1

+ then
7: x∗ ← x̄, U ← L
8: stop
9: end if

10: ∆j = |x∗j − x̄j|, j = 1, . . . , r1
11: Index xj so that ∆j ≤ ∆j+1, j = 1, . . . , r1 − 1
12: k ← r1
13: while time limit is not reached and k ≥ 0 do
14: Jk ← {1, . . . , k}
15: Add constraint ∆(Jk,x

∗,x) = 0 to P
16: Solve the problem P to obtain the solution x′

17: if optimal solution found or problem is infeasible then
18: Replace the last added constraint with ∆(Jk,x

∗,x) ≥ 1
19: else
20: Delete the last added constraint
21: end if
22: if f(x′) < f(x∗) then
23: x∗ ← x′, U ← f(x′)
24: if |U − L| ≤ ε|U | then
25: stop
26: end if
27: end if
28: k ← k − 1
29: end while
30: end while

40

7 Computing Stochastic Measures

7.1 Ancillary Algorithms - EV and WS

The system may also evaluate the following special problems:

• Expected value (EV) problem, which assumes that all data will take their expected
values.

• Wait-and-see (WS) problem, which is obtained by solving a separate sub-problem for
each scenario assuming that all random data is already known. The final WS solution
is the probability-weighted average of these solutions for each scenario.

Each special problem can be evaluated in addition to the main HN problem. When the
calculation of stochastic measures are required, the EV and/or the WS problems will be
solved as needed, whether or not a corresponding option has been set. See section 7.2 below.

7.2 Stochastic Measures - EVPI and VSS

The expected value of perfect information (EVPI) is computed as the difference between the
optimal values of the wait-and-see (WS) and the here-and-now (HN) problems. Therefore
the EVPI option implies the solution of both the HN and WS problems.

In order to calculate the value of the stochastic solution (VSS), we need to know the expec-
tation of the expected value solution (EEV). EEV is calculated by solving the EV problem,
fixing the obtained solution in the WS sub-problems, and computing the probability weighted
objective value. Hence the VSS option implies the solution of all three classes of problems,
HN, EV and WS, whether or not it is specified in the corresponding option.

7.3 Algorithm Controls and Options

Options for SP algorithms are as follows:

CLI Name --solve-hn

SAMPL Name solve hn

Description Flag specifying whether to solve the here-and-now problem
Value 0 or 1
Default 1

CLI Name --solve-ev

SAMPL Name solve ev

Description Flag specifying whether to solve the expected value problem
Value 0 or 1
Default 0

CLI Name --solve-ws

SAMPL Name solve ws

Description Flag specifying whether to solve the wait-and-see problem
Value 0 or 1
Default 0

41

CLI Name --compute-evpi

SAMPL Name compute evpi

Description Flag specifying whether to compute the expected value of perfect
information (EVPI)
The expected value of perfect information requires the solution of
both HN and WS models. Setting this option to 1 implies both
--solver-hn and --solve-ws to be set. EVPI is the absolute differ-
ence between the HN and WS solution objectives.

Value 0 or 1
Default 0

CLI Name --compute-vss

SAMPL Name compute vss

Description Flag specifying whether to compute the value of the stochastic solu-
tion (VSS)2

Value 0 or 1
Default 0

CLI Name --vss-fstage

SAMPL Name vss fstage

Description Flag specifying whether to fix only the first stage when computing
the value of the stochastic solution2

Value 0 or 1
Default 0

42

CLI Name --sp-alg

SAMPL Name sp alg

Description Stochastic programming algorithm to be used
Value The possible values for this option are listed in the table below.

Name Description

auto The algorithm is chosen automatically (default)
deteq The deterministic equivalent problem with implicit

non-anticipativity is constructed and solved
deteqx The deterministic equivalent problem with explicit

non-anticipativity constraints is constructed and
solved

benders Benders’ decomposition
level Variant of level decomposition
trustregion The trust region method by Linderoth and Wright

(2003)
rd Regularised decomposition

The default algorithm - auto - chosen by the system - is Benders’ de-
composition for two-stage recourse problems and deterministic equiv-
alent with implicit nonanticipativity for other problems. An excep-
tion to this is single-stage ICC problems, which by default are solved
with the special cutting plane algorithm. All other CC and ICC
problems are solved only with deterministic equivalent.

Default auto

CLI Name --time-limit

SAMPL Name time limit

Description Time limit in seconds
Value Nonnegative number
Default 3600

Options for Benders’ decomposition:

CLI Name --ben-pp-expval

SAMPL Name ben pp expval

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value 0 or 1
Default 1

2VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this
option to 1 forces both --solver-hn and --solve-ws to be set. In order to calculate VSS we need to
know the EEV - expected value of the expected value solution. EEV is calculated by solving the EV model,
fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a
probability-weighted average value for the objective - which is the VSS. Option --vss-fstage can be used
to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the
theoretical result is often meaningless as a complete fix may be infeasible).

43

CLI Name --ben-fffb

SAMPL Name ben fffb

Description Flag specifying whether to use fast forward, fast back method for
multi-stage

Value 0 or 1
Default 0

CLI Name --ben-theta-lower

SAMPL Name ben theta lower

Description Lower bound for θ used when necessary to avoid unbounded situa-
tions.
In certain cases the addition of optimality cuts creates an unbounded
situation as θ is a free variable. As an ad-hoc fix for this, a large
negative lower bound is applied to θ, which is retained until no longer
needed. If not large enough then the Benders algorithm may halt
prematurely with a cycling status. It may then be possible to obtain a
correct solution by specifying a lower value for this option, for example
−1000000.

Value Number
Default -100000

CLI Name --ben-cut-factor

SAMPL Name ben cut factor

Description Maximum cuts per child scenario
Value Integer
Default 20

CLI Name --ben-max-iter

SAMPL Name ben max iter

Description Iteration limit for Benders’ decomposition
Value Nonnegative integer
Default 10000

44

FortSP

bendersdeteqxdeteq level

plugin interface

gurobi

primal

dual

cplex

primal

dual

ipm

fortmp

primal

dual

Figure 5: FortSP algorithms and solvers

8 External Solvers

8.1 Solvers Available

FortSP has a powerful plug-in system that allows to connect it to third-party LP, QP and
MIP solvers. Plugin-in is a dynamic library (DLL on Windows, shared object on Unix) that
provides an implementation of the plug-in interface. Currently FortSP is connected to the
following solvers: CPLEX, FortMP and Gurobi. The external solver can be selected using
the --solver option which takes on the solver name (lowercase) as a value, for example,
--solver=gurobi.

Figure 5 illustrates which combinations of algorithms and plug-ins are supported in FortSP.
Compatible modules are connected by arcs so, for instance, it is possible to solve deterministic
equivalent problems with any solver and LP algorithm.

8.2 Solver Options and Controls

Options for LP or QP solver execution are as follows:

CLI Name --solver

SAMPL Name solver

Description External solver name
Value String
Default fortmp (windows) or cplex (linux/mac)

45

CLI Name --lp-alg

SAMPL Name lp alg

Description This option specifies which LP algorithm should be used to solve
a deterministic equivalent problem and all linear programming sub-
problems that are constructed in the course of solving the SP problem.

Value The possible values for this option are listed in the table below.

Name Description

auto The algorithm is chosen automatically (default)
primal Primal simplex method
dual Dual simplex method
ipm Interior point method

Default auto

CLI Name --basis-restart

SAMPL Name basis restart

Description Flag specifying whether to use warm start
Value 0 or 1
Default 1

46

CLI Name --use-fortmp-specs

SAMPL Name use fortmp specs

Description Flag specifying whether to use extra SPECS-command file (only with
the FortMP solver.)
A SPECS command file with the name fortmp.spc may be used to
refine the options when FortMP is the solver in use. See the FortMP
manual (Ellison et al., 2008). Commands are to be provided in sec-
tions corresponding to the type of sub-problem that is being solved,
according to the following table:

Section ID Description

ALL Section that applies to every call to the solver.
Must appear first in the SPECS file.

DeqImna Section to handle Deterministic Equivalent -
Implicit NA

DeqExna Section to handle Deterministic Equivalent -
Explicit NA

ExpVal Section to handle Expected Value solutions
Wsprob Section to handle Wait and See scenario sub-

problems
BendRoot Section to handle Benders root-node sub-

problem solutions (multi-stage)
BendNode Section to handle Benders node sub-problem

solutions other that root or leaf (multi-stage)
BendLeaf Section to handle Benders leaf sub-problem so-

lutions with no warm restart (multi-stage)
BenRLeaf Section to handle Benders leaf sub-problem so-

lutions with warm restart (multi-stage)
Ben2Mast Section to handle Benders master-problem so-

lutions (two-stage)
Ben2Sprb Section to handle Benders sub-problem solu-

tions (two-stage)
LevelQP Section to handle Benders Level-method QP

solutions (two-stage)

The section ID is named in a BEGIN line - e.g. BEGIN (DeqImna) -
which is followed by the SPECS commands for that section. Each
section is terminated with a line END.

Value 0 or 1
Default 0

47

9 Solution File and Logging

Solution file gives the model-type solutions that are requested with status and values for
both primal and dual solutions. This is limited by default to values for the first stage only,
extendable to further stages by option.

Diagnostics of any unusual events or errors occurring is reported to the console. The log file
gives solver messages that are normally not of interest to the user and therefore logging is
disabled by default.

9.1 Output Controls and Options

Options for solution output and logging are as follows:

CLI Name --sol-file

SAMPL Name sol file

Description Actual name of the solution file. If the filename is empty solution
output is disabled.

Value String
Default

CLI Name --sol-include-second-stage

SAMPL Name sol include second stage

Description Include information for the 2nd stage solution if it is available. The
information will be appended at the end of the solution file. Currently
the option --sol-format must be set to ‘ampl’ for the information
to be written in the output file.

Value 0 or 1
Default 0

CLI Name --log-file

SAMPL Name log file

Description Actual name of the log file. If the filename is empty logging is dis-
abled.

Value String
Default

48

CLI Name --ben-log-print

SAMPL Name ben log print

Description Code for items to be logged (Benders multi-stage only)
Additional logged output can be generated with the option
--ben-log-print. This should be used with caution as the log-file
can easily be swamped. Certain values of use are:

• 3 - for solution status of each node (plus the default)

• 19 - for details of the node tree (plus the above)

• 95 - for description of every cut applied (plus the above)

with option 3 the output volume may be reduced by specifying
--ben-log-freq - that is the interval to leave between node solution-
status logs.

Value Integer
Default 1

CLI Name --ben-log-freq

SAMPL Name ben log freq

Description Logged every this number of passes (Benders multi-stage only)
Value Integer
Default 1

9.2 Solution Format for Second Stage

By default, information is included for the first stage solution. If the user explicitly selects
the corresponding option, information for the second stage will be appended (if available) at
the end of the solution file. Second stage solution will be in an AMPL solution format for
suffixes as follows:

suffix <kind> <n> <namelen> <tablen> <tablines>

<sufname>

<index 1> <value 1>

<index 2> <value 2>

...

<index n> <value n>

Field kind is the type of data being represented (0 - primal variable suffix, 1 - dual variable
suffix), n is the number of values (for example, number of second stage variables), namelen
is a length of the suffix name (the sufname string) + 1, tablen and tablines are irrelevant
and will be equal to zero. These values are maintained for AMPL compatibility purposes.
Field index i is a zero-based index of an item (primal or dual variable), value i is the value
associated with an item at index i.

Both scenario indices and types of values are enconded in suffix names (represented by suf-
name). For example, primal variables suffix names are enconded in the form v<scenario i>,

49

where v stands for value scenario i is a zero-based scenario index. Similarly for constraints
(dual variables) suffix names can be of the form d<scenario i> with d standing for dual.

50

References

Ariyawansa, K. A. and Felt, A. J. (2004). On a new collection of stochastic linear program-
ming test problems. INFORMS Journal on Computing, 16(3):291–299.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik, 4:238–252. Re-publised in Computational Manage-
ment Science 2 (2005), 3–19.

Birge, J. R., Dempster, M. A. H., Gassmann, H. I., Gunn, E. A., King, A. J., and Wallace,
S. W. (1987). A standard input format for multiperiod stochastic linear programs. COAL
Newsletter, 17:1–19.

Birge, J. R. and Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic linear
programs. European Journal of Operational Research, 34:384–392.

Birge, J. R. and Louveaux, F. V. (1997). Introduction to Stochastic Programming. Springer-
Verlag, New York.

Colombo, M. and Gondzio, J. (2008). Further development of multiple centrality correctors
for interior point methods. Computational Optimization and Applications, 41:277–305.

Dantzig, G. B. and Madansky, A. (1961). On the solution of two-stage linear programs under
uncertainty. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 165–176. University of California Press, Berkeley.

Dantzig, G. B. and Wolfe, P. (1960). The decomposition principle for linear programs.
Operations Research, 8:101–111.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213.

Ellison, E. F. D., Hajian, M., Jones, H., Levkovitz, R., Maros, I., Mitra, G., and Sayers,
D. (2008). FortMP Manual. Brunel University: London, Numerical Algorithms Group:
Oxford. http://www.optirisk-systems.com/manuals/FortmpManual.pdf.

Fábián, C. I. (2000). Bundle-type methods for inexact data. Central European Journal of
Operations Research, 8:35–55. Special issue, T. Csendes and T. Rapcsák, eds.

Fábián, C. I. and Szőke, Z. (2007). Solving two-stage stochastic programming problems with
level decomposition. Computational Management Science, 4:313–353.

Gassmann, H. (1990). MSLiP: a computer code for the multistage stochastic linear program-
ming problem. Mathematical Programming, 47:407–423.

Gondzio, J. (1995). Hopdm (version 2.12) a fast lp solver based on a primal-dual interior
point method. European Journal of Operational Research, 85:221–225.

Holmes, D. (1995). A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS). http:

//users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html.

Kall, P. and Mayer, J. (1998). On testing SLP codes with SLP-IOR. In New Trends in
Mathematical Programming: Homage to Steven Vajda, pages 115–135. Kluwer Academic
Publishers.

51

http://www.optirisk-systems.com/manuals/FortmpManual.pdf
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html
http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html

Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimization. Springer-Verlag,
Berlin, New York.

Klein Haneveld, W. K. and Vlerk, M. H. (2002). Integrated chance constraints: reduced
forms and an algorithm. Technical report, University of Groningen, Research Institute
SOM (Systems, Organisations and Management).

König, D., Suhl, L., and Koberstein, A. (2007). Optimierung des Gasbezugs im liberalisierten
Gasmarkt unter Berücksichtigung von Röhren- und Untertagespeichern. In Sammelband
zur VDI Tagung ”Optimierung in der Energiewirtschaft” in Leverkusen.

Lemaréchal, C. (1978). Nonsmooth optimization and descent methods. Research Report
78-4, IIASA, Laxenburg, Austria.

Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. (1995). New variants of bundle methods.
Mathematical Programming, 69:111–147.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic programming
on a computational grid. Computational Optimization and Applications, 24:207–250.

Nemirovski, A. (2005). Lectures in modern convex optimization. ISYE, Georgia Institute of
Technology.

Oliveira, W., Sagastizábal, C., and Scheimberg, S. (2011). Inexact bundle methods for
two-stage stochastic programming. SIAM Journal on Optimization, 21:517–544.

Rockafellar, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14:877–898.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of poly-
hedral functions. Mathematical Programming, 35:309–333.

Ruszczyński, A. (2003). Decomposition methods. In Ruszczyński, A. and Shapiro, A., ed-
itors, Stochastic Programming, Handbooks in Operations Research and Management Sci-
ence, volume 10, pages 141–211. Elsevier, Amsterdam.

Ruszczyński, A. (2006). Nonlinear Optimization. Princeton University Press.

Ruszczyński, A. and Świȩtanowski, A. (1997). Accelerating the regularized decomposition
method for two-stage stochastic linear problems. European Journal of Operational Re-
search, 101:328–342.

Valente, C., Mitra, G., Sadki, M., and Fourer, R. (2009). Extending algebraic modelling
languages for stochastic programming. Informs Journal on Computing, 21(1):107–122.

Valente, P., Mitra, G., Poojari, C., Ellison, E. F., Di Domenica, N., Mendi, M., and
Valente, C. (2008). SAMPL/SPInE User Manual. OptiRisk Systems. http://www.

optirisk-systems.com/manuals/SpineAmplManual.pdf.

Van Slyke, R. and Wets, R. J. B. (1969). L-shaped linear programs with applications to
optimal control and stochastic programming. SIAM Journal on Applied Mathematics,
17:638–663.

52

http://www.optirisk-systems.com/manuals/SpineAmplManual.pdf
http://www.optirisk-systems.com/manuals/SpineAmplManual.pdf

Zverovich, V., Fábián, C. I., Ellison, F., and Mitra, G. (2012). A computational study of a
solver system for processing two-stage stochastic lps with enhanced benders decomposition.
Mathematical Programming Computation, 4(3):211–238.

53

APPENDICES

A Option Summary

The following is a complete list of options.

SMPS Input Options

CLI Name --smps-obj-sense

SAMPL Name smps obj sense

Description The sense of optimisation for SMPS problems
Value minimize or maximize
Default minimize

Algorithm Options

CLI Name --solve-hn

SAMPL Name solve hn

Description Flag specifying whether to solve the here-and-now problem
Value 0 or 1
Default 1

CLI Name --solve-ev

SAMPL Name solve ev

Description Flag specifying whether to solve the expected value problem
Value 0 or 1
Default 0

CLI Name --solve-ws

SAMPL Name solve ws

Description Flag specifying whether to solve the wait-and-see problem
Value 0 or 1
Default 0

CLI Name --compute-evpi

SAMPL Name compute evpi

Description Flag specifying whether to compute the expected value of perfect
information (EVPI)
The expected value of perfect information requires the solution of
both HN and WS models. Setting this option to 1 implies both
--solver-hn and --solve-ws to be set. EVPI is the absolute differ-
ence between the HN and WS solution objectives.

Value 0 or 1
Default 0

54

CLI Name --compute-vss

SAMPL Name compute vss

Description Flag specifying whether to compute the value of the stochastic solu-
tion (VSS)3

Value 0 or 1
Default 0

CLI Name --vss-fstage

SAMPL Name vss fstage

Description Flag specifying whether to fix only the first stage when computing
the value of the stochastic solution3

Value 0 or 1
Default 0

CLI Name --sp-alg

SAMPL Name sp alg

Description Stochastic programming algorithm to be used
Value The possible values for this option are listed in the table below.

Name Description

auto The algorithm is chosen automatically (default)
deteq The deterministic equivalent problem with implicit

non-anticipativity is constructed and solved
deteqx The deterministic equivalent problem with explicit

non-anticipativity constraints is constructed and
solved

benders Benders’ decomposition
level Variant of level decomposition
trustregion The trust region method by Linderoth and Wright

(2003)
rd Regularised decomposition

The default algorithm - auto - chosen by the system - is Benders’ de-
composition for two-stage recourse problems and deterministic equiv-
alent with implicit nonanticipativity for other problems. An excep-
tion to this is single-stage ICC problems, which by default are solved
with the special cutting plane algorithm. All other CC and ICC
problems are solved only with deterministic equivalent.

Default auto

CLI Name --time-limit

SAMPL Name time limit

Description Time limit in seconds
Value Nonnegative number
Default 3600

3VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this
option to 1 forces both --solver-hn and --solve-ws to be set. In order to calculate VSS we need to

55

Options for Benders’ Decomposition

CLI Name --ben-pp-expval

SAMPL Name ben pp expval

Description Flag specifying whether to obtain the initial first stage solution by
solving the EV problem

Value 0 or 1
Default 1

CLI Name --ben-fffb

SAMPL Name ben fffb

Description Flag specifying whether to use fast forward, fast back method for
multi-stage

Value 0 or 1
Default 0

CLI Name --ben-theta-lower

SAMPL Name ben theta lower

Description Lower bound for θ used when necessary to avoid unbounded situa-
tions.
In certain cases the addition of optimality cuts creates an unbounded
situation as θ is a free variable. As an ad-hoc fix for this, a large
negative lower bound is applied to θ, which is retained until no longer
needed. If not large enough then the Benders algorithm may halt
prematurely with a cycling status. It may then be possible to obtain a
correct solution by specifying a lower value for this option, for example
−1000000.

Value Number
Default -100000

CLI Name --ben-cut-factor

SAMPL Name ben cut factor

Description Maximum cuts per child scenario
Value Integer
Default 20

CLI Name --ben-max-iter

SAMPL Name ben max iter

Description Iteration limit for Benders’ decomposition
Value Nonnegative integer
Default 10000

know the EEV - expected value of the expected value solution. EEV is calculated by solving the EV model,
fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a
probability-weighted average value for the objective - which is the VSS. Option --vss-fstage can be used
to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the
theoretical result is often meaningless as a complete fix may be infeasible).

56

Solver Options

CLI Name --solver

SAMPL Name solver

Description External solver name
Value String
Default fortmp (windows) or cplex (linux/mac)

CLI Name --lp-alg

SAMPL Name lp alg

Description This option specifies which LP algorithm should be used to solve
a deterministic equivalent problem and all linear programming sub-
problems that are constructed in the course of solving the SP problem.

Value The possible values for this option are listed in the table below.

Name Description

auto The algorithm is chosen automatically (default)
primal Primal simplex method
dual Dual simplex method
ipm Interior point method

Default auto

CLI Name --basis-restart

SAMPL Name basis restart

Description Flag specifying whether to use warm start
Value 0 or 1
Default 1

57

CLI Name --use-fortmp-specs

SAMPL Name use fortmp specs

Description Flag specifying whether to use extra SPECS-command file (only with
the FortMP solver.)
A SPECS command file with the name fortmp.spc may be used to
refine the options when FortMP is the solver in use. See the FortMP
manual (Ellison et al., 2008). Commands are to be provided in sec-
tions corresponding to the type of sub-problem that is being solved,
according to the following table:

Section ID Description

ALL Section that applies to every call to the solver.
Must appear first in the SPECS file.

DeqImna Section to handle Deterministic Equivalent -
Implicit NA

DeqExna Section to handle Deterministic Equivalent -
Explicit NA

ExpVal Section to handle Expected Value solutions
Wsprob Section to handle Wait and See scenario sub-

problems
BendRoot Section to handle Benders root-node sub-

problem solutions (multi-stage)
BendNode Section to handle Benders node sub-problem

solutions other that root or leaf (multi-stage)
BendLeaf Section to handle Benders leaf sub-problem so-

lutions with no warm restart (multi-stage)
BenRLeaf Section to handle Benders leaf sub-problem so-

lutions with warm restart (multi-stage)
Ben2Mast Section to handle Benders master-problem so-

lutions (two-stage)
Ben2Sprb Section to handle Benders sub-problem solu-

tions (two-stage)
LevelQP Section to handle Benders Level-method QP

solutions (two-stage)

The section ID is named in a BEGIN line - e.g. BEGIN (DeqImna) -
which is followed by the SPECS commands for that section. Each
section is terminated with a line END.

Value 0 or 1
Default 0

58

Output Options

CLI Name --sol-file

SAMPL Name sol file

Description Actual name of the solution file. If the filename is empty solution
output is disabled.

Value String
Default

CLI Name --sol-include-second-stage

SAMPL Name sol include second stage

Description Include information for the 2nd stage solution if it is available. The
information will be appended at the end of the solution file. Currently
the option --sol-format must be set to ‘ampl’ for the information
to be written in the output file.

Value 0 or 1
Default 0

CLI Name --log-file

SAMPL Name log file

Description Actual name of the log file. If the filename is empty logging is dis-
abled.

Value String
Default

CLI Name --ben-log-print

SAMPL Name ben log print

Description Code for items to be logged (Benders multi-stage only)
Additional logged output can be generated with the option
--ben-log-print. This should be used with caution as the log-file
can easily be swamped. Certain values of use are:

• 3 - for solution status of each node (plus the default)

• 19 - for details of the node tree (plus the above)

• 95 - for description of every cut applied (plus the above)

with option 3 the output volume may be reduced by specifying
--ben-log-freq - that is the interval to leave between node solution-
status logs.

Value Integer
Default 1

CLI Name --ben-log-freq

SAMPL Name ben log freq

Description Logged every this number of passes (Benders multi-stage only)
Value Integer
Default 1

59

B Solution Methods for Two-Stage Stochastic Program-

ming Problems

In this appendix we only consider linear SP models and assume that the random parameters
have a discrete finite distribution. This class is based on two key concepts: (i) a finite set of
discrete scenarios (of model parameters) and (ii) a partition of variables to first stage (“here
and now”) decision variables and a second stage observation of the parameter realisations
and corrective actions and the corresponding recourse (decision) variables.

B.1 Deterministic Equivalent

The first stage decisions are represented by the vector x. Assume there are S possible
outcomes (scenarios) of the random event, the ith outcome occurring with probability pi.
Suppose the first stage decision has been made with the result x, and the ith scenario is
realised. The second stage decision y is computed by solving the following second-stage
problem or recourse problem

Ri(x) : min qTi y
subject to Tix+Wiy = hi,

y ≥ 0,
(17)

where qi, hi are given vectors and Ti , Wi are given matrices. Let Ki denote the set of
those x vectors for which the recourse problem Ri(x) has a feasible solution. This is a
convex polyhedron. For x ∈ Ki, let qi(x) denote the optimal objective value of the recourse
problem. We assume that qi(x) > −∞ (or equivalently, we assume that the dual of the
recourse problem Ri(x) has a feasible solution, solvability of the dual problem does not
depend on x). The function qi : Ki → R is a polyhedral (i.e., piecewise linear) convex
function.

The customary formulation of the first-stage problem is stated as:

min cTx+
∑S

i=1 piqi(x)
subject to x ∈ X,

x ∈ Ki, (i = 1, . . . , S),
(18)

where X := x|Ax = b,x ≥ 0 is a non-empty bounded polyhedron describing the constraints,
c and b are given vectors and A is a given matrix, with compatible sizes. The expectation
part of the objective, F (x) :=

∑S
i=1 piqi(x), is called the expected recourse function. This is

a polyhedral convex function with the domain K := K1 ∩ . . . ∩KS.

This two-stage stochastic programming problem ((18) and (17)) can be formulated as a single
linear programming problem called the deterministic equivalent problem:

60

min cTx+ p1q
T
1 y1+ . . . + pSq

T
SyS

subject to Ax = b,
T1x+W1y1 = h1
...

. . .
...

TSx+ WSyS = hS

x ≥ 0,y1 ≥ 0, . . . ,yS ≥ 0

(19)

B.2 Decomposition Methods

The deterministic equivalent problem (19) is a linear programming problem of a specific
structure: for each scenario, a subproblem is included that describes the second-stage decision
associated with the corresponding scenario realisation. The subproblems are linked by the
first-stage decision variables. Dantzig and Madansky (1961) observed that the dual of the
deterministic equivalent problem fits the prototype for the Dantzig-Wolfe decomposition
(Dantzig and Wolfe (1960)).

Van Slyke and Wets (1969) proposed a cutting-plane approach for the first-stage problem
(18). Their L-Shaped method builds respective cutting-plane models of the feasible domain
K = K1∩ . . .∩KS and of the expected recourse function F =

∑S
i=1 piqi. We outline cutting-

plane models and their relationship with decomposition. Let us denote the dual of Ri(x) in
(17) as

Di(x) : max zT (hi − Tix)
subject to W T

i z ≤ qi,
(20)

where z is a real-valued vector.

The feasible region is a convex polyhedron that we assumed nonempty. We will characterise
this polyhedron by two finite sets of vectors: let Ui and Vi denote the sets of the extremal
points and of the extremal rays, respectively, in case the polyhedron can be represented by
these sets. To handle the general case, we require further formalism; let us add a slack
vector γ of appropriate dimension, and use the notation [W T

i , I](z,γ) = W T
i z+ γ. Given a

composite vector (z,γ) of appropriate dimensions, let support (z,γ) denote the set of those
column-vectors of the composite matrix [W T

i , I] that belong to non-zero(z,γ)-components.
Using these, let

Ui = {z|W T
i z + γ = qi,γ ≥ 0, support (z,γ) is a linearly independent set },

Vi = {z|W T
i z + γ = 0,γ ≥ 0, ‖(z, γ)‖ = 1 support (z,γ) is a minimal dependent set },

where a minimal dependent set is a set that is not linearly independent; but is minimal in the
sense that having discarded any of its elements, the remaining elements compose a linearly
independent set.

Ui is the set of the basic feasible solutions of problem (20) and hence it is a finite set.
Finiteness of Vi can be proven in a similar manner: Given a minimal dependent subset of
the columns of the matrix [W T

i , I], there are no more than 2 vectors in Vi that have the given

61

subset as support. The feasible domain of the dual problem Di(x) in (20) can be represented
as convex combinations of Ui-elements added to cone-combinations of Vi-elements.

We have x ∈ Ki if and only if the dual problem Di(x) has a finite optimum, that is,

vTi (hi − Tix) ≤ 0 holds for every vi ∈ Vi

In this case, the optimum of Di(x) is attained at an extremal point, and can be computed
as

min ϑi

subject to ϑi ∈ R
uT

i (hi − Tix) ≤ ϑi (ui ∈ Ui)

By the linear programming duality theorem, the optimum of the above problem is equal to
qi(x); hence the first-stage problem (18) is written as

min cTx+
∑S

i=1 piϑi

subject to x ∈ X, ϑi ∈ R (i = 1, . . . , S)
vTi (hi − Tix) ≤ 0 (vi ∈ Vi, i = 1, . . . , S)
uT

i (hi − Tix) ≤ ϑi (ui ∈ Ui, i = 1, . . . , S)

(21)

This we call the disaggregated form. The aggregated form is stated as

min cTx+ ϑ
subject to x ∈ X, ϑ ∈ R

vTi (hi − Tix) ≤ 0 (vi ∈ Vi, i = 1, . . . , S)∑S
i=1 piu

T
i (hi − Tix) ≤ ϑ

(
(u1, . . . ,uS) ∈ U

) (22)

where U ⊂ U1 × . . .× US is a subset that contains an element for each facet in the graph of
the polyhedral convex function F ; formally, we have

F (x) =
S∑

i=1

{
pi max
ui∈Ui

uT
i (hi − Tix)

}
= max

(u1,...,uS)∈U

S∑
i=1

piu
T
i (hi − Tix)

Cutting-plane methods can be devised on the basis of either the disaggregated formulation
(21) or the aggregated formulation (22). These are processed by iterative methods that build
respective cutting-plane models of the feasible set K and the expected recourse function F .
Cuts at a given iterate x̂ are generated by solving the dual problems Di(x̂)(i = 1, . . . , S).
Dual problems with unbounded objectives yield feasibility cuts that are used to construct
a model of K. Dual problems with optimal solutions yield optimality cuts that are used to
construct a model of F .

62

In its original form, the L-Shaped method of Van Slyke and Wets (1969) works on the aggre-
gated problem. A multicut version that works on the disaggregated problem was proposed
by Birge and Louveaux (1988).

There is a close relationship between decomposition and cutting-plane approaches. It turns
out that the following approaches yield methods that are in principle identical:

• cutting-plane method for either the disaggregated problem (21) or the aggregated
problem (21),

• DantzigWolfe decomposition (Dantzig and Wolfe (1960)) applied to the dual of the
deterministic equivalent problem (19),

• Benders decomposition (Benders (1962)) applied to the deterministic equivalent prob-
lem (19).

Cutting-plane formulations have the advantage that they give a clear visual illustration
of the procedure. A state-of-the-art overview of decomposition methods can be found in
Ruszczyński (2003).

B.2.1 Aggregated versus disaggregated formulations

The difference between the aggregated and the disaggregated problem formulations may
result in a substantial difference in the efficiency of the solution methods. By using disag-
gregated cuts, more detailed information is stored in the master problem, hence the number
of the master iterations is reduced in general. This is done at the expense of larger master
problems.

Birge and Louveaux (1997) conclude that the multicut approach is in general more effective
when the number of the scenarios is not significantly larger than the number of the constraints
in the first-stage problem. This conclusion is based on their own numerical results (Birge
and Louveaux (1988)) and those of Gassmann (1990).

B.3 Regularisation and trust region methods

It is observed that successive iterations do not generally produce an orderly progression
of solutions - in the sense that while the change in objective value from one iteration to
the next may be very small, even zero, a wide difference may exist between corresponding
values of the first-stage variables. This feature of zigzagging in cutting plane methods is
the consequence of using a linear approximation. Improved methods were developed that
use quadratic approximation: proximal point method by Rockafellar (1976), and bundle
methods by Kiwiel (1985) and Lemaréchal (1978). These methods construct a sequence
of stability centers together with the sequence of the iterates. When computing the next
iterate, roaming away from the current stability center is penalised.

Another approach is the trust region methods, where a trust region is constructed around
the current stability center, and the next iterate is selected from this trust region.

63

B.4 Regularised decomposition

The Regularised Decomposition (RD) method of Ruszczyński (1986) is a bundle-type method
applied to the minimisation of the sum of polyhedral convex functions over a convex poly-
hedron, hence this method fits the disaggregated problem (19). The RD method lays an
emphasis on keeping the master problem as small as possible. (This is achieved by an effec-
tive constraint reduction strategy.) A recent discussion of the RD method can be found in
Ruszczyński (1986).

Ruszczyński and Świȩtanowski (1997) implemented the RD method, and solved two-stage
stochastic programming problems, with a growing scenario set. Their test results show that
the RD method is capable of handling large problems.

B.5 Regularisation: The level method

A more recent development in convex programming is the level method of Lemaréchal et al.
(1995). This is a special bundle-type method that uses level sets of the model functions for
regularisation. Let us consider the problem

min f(x)
subject to x ∈ Y (23)

where Y ⊂ Rn is a convex bounded polyhedron, and f a real-valued convex function, Lip-
schitzian relative to Y . The level method is an iterative method, a direct generalization of
the classical cutting-plane method. A cutting-plane model of f is maintained using function
values and subgradients computed at the known iterates. Let f denote the current model
function; this is the upper cover of the linear support functions drawn at the known iter-
ates. Hence f is a polyhedral convex lower approximation of f . The level sets of the model
function are used for regularisation.

Let x̂ denote the current iterate. Let F ∗ denote the minimum of the objective values in the
known iterates. Obviously F ∗ is an upper bound for the optimum of (23).

Let F := minx∈Y f(x) denote the minimum of the current model function over the feasible
polyhedron. Obviously F is a lower bound for the optimum of (23).

If the gap F ∗ − F is small, then the algorithm stops. Otherwise let us consider the level set
of the current model function belonging to the level (1 − λ)F ∗ + λF where 0 < λ < 1 is a
fixed parameter. Using formulas, the current level set is

Ŷ =
{
x ∈ F

∣∣∣ f(x) ≤ (1− λ)F ∗ + λF
}
.

The next iterate is obtained by projecting the current iterate onto the current level set. For-
mally, the next iterate is an optimal solution of the convex quadratic programming problem
min ‖x− x̂‖2 subject to x ∈ Ŷ .

Lemaréchal et al. (1995) give the following efficiency estimate: To obtain a gap smaller than
ε, it suffices to perform

64

κ

(
DL

ε

)2

(24)

iterations, where D is the diameter of the feasible polyhedron, L is a Lipschitz constant
of the objective function, and κ is a constant that depends only on the parameter of the
algorithm.

Applying the level method to our first-stage problem (18), let f(x) := cTx + F (x) and
Y = X

⋂
K. The feasible domain is not known explicitly (except for problems with relatively

complete recourse). Hence, in general, we must construct a cutting-plane model of Y using
feasibility cuts. The level method must be adapted accordingly: the objective value can only
be computed for feasible iterates. We clearly obtain a finite procedure because the set of
the possible cuts is finite. (We never discard cuts in our implementation. Though there are
means of bundle reduction for the level method, we did not implement them because the
level method solved our test problems in but a few iterations.)

Remark 1 In case of relatively complete recourse no feasibility cuts are needed, and the effi-
ciency estimate (24) applies. This estimate is essentially different from the classic finiteness
results obtained when a polyhedral convex function is minimised by a cutting-plane method.
Finiteness results are based on enumeration. The straightforward finiteness proof assumes
that basic solutions are found for the model problems, and that there is no degeneracy.
(These assumptions facilitate bundle reduction.)

An interesting finiteness proof that allows for nonbasic solutions is presented in Ruszczyński
(2006). This is based on the enumeration of the cells (i.e., polyhedrons, facets, edges,
vertices) that the linear pieces of the objective function define.

Remark 2 In general, the constants L and D in (24) are not easily derived from the problem
data. Upper bounds of the Lipschitz constant L are proposed in Fábián and Szőke (2007) for
the case of special two-stage stochastic programming problems, e.g., those having network
recourse (SP problems where the second-stage subproblems are network flow problems). But
even with constants of reasonable magnitudes, the estimate (24) generally yields bounds too
large for practical purposes.

However, the level method performs much better in practice than the estimate (24) implies.
Nemirovski (2005) [chapter 5.3.2] observes the following experimental fact: when solving
a problem with n variables, every n steps add a new accurate digit in our estimate of
the optimum. This observation is confirmed by those experiments reported in Fábián and
Szőke (2007), where the level method is applied for the solution of two-stage stochastic
programming problems with relatively complete recourse. That paper also reports on solving
the problems with growing scenario sets. According to the results presented, there is no
relationship connecting the number of the scenarios and the number of the levelmaster
iterations required (provided the number of the scenarios is large enough).

Remark 3 There are extensions of the level method that particularly fit in with a two-stage
stochastic problem solver.

The constrained level method of Lemaréchal et al. (1995) is a primal-dual method that
solves convex problems involving constraint functions. The first-stage problem (18) can be
formulated using a constraint function instead of the set constraints x ∈ Ki(i = 1, . . . , S).

65

A measure of the second-stage infeasibility can be used as a constraint function; namely,
the expectation of the infeasibility in the corresponding second-stage problems. Fábián and
Szőke (2007) applied the constrained level method to this constraint function formulation
of the first-stage problem. The advantage of this approach is that regularisation extends to
feasibility issues. This approach requires extending the expected recourse function beyond
K.

Fábián (2000) proposed inexact versions of the level method and the constrained level
method. The inexact methods use approximate data to construct models of the objective
and constraint functions. At the beginning of the procedure, a rough approximation is used,
and the accuracy is gradually increased as the optimum is approached. Solving the first-stage
problem with an inexact method facilitates a progressive approximation of the distribution.
Moreover we can work with approximate solutions of the second stage problems. Numerical
results of Fábián and Szőke (2007) show that this progressive approximation framework is
effective: although the number of the master iterations is larger than in the case of the exact
method, there is a substantial reduction in the solution time of the second-stage problems.

A different approach of using inexact bundle methods for two-stage stochastic programming
problems is proposed by Oliveira et al. (2011).

Remark 4 The level method can also be implemented for problems with unbounded domain
Y . A set of initial cuts is then needed to make the master objective bounded from below,
just like with a pure cutting-plane method.

The constant D is never actually used in course of the level method; it is used only in
the convergence proof and in the theoretical efficiency estimate (24). In case the objective
function f is polyhedral, then finiteness of the procedure follows from the finiteness of the
set of the possible cuts.

Remark 5 An interesting feature of the level method is that the parameter λ is fixed. This
is in contrast with other bundle-type methods that need continual tuning of the parameters
in course of operation.

B.6 Regularisation: Trust-region

The box-constrained trust-region method of Linderoth and Wright (2003) solves the disag-
gregated problem (21), and uses a special trust-region approach.

Trust-region methods construct a sequence of stability centers together with the sequence of
the iterates. Trust regions are constructed around the stability centers, and the next iterate
is selected from the current trust region. Linderoth and Wright construct box-shaped trust
regions, hence the resulting master problems remain linear. The size of the trust region is
continually adapted on the basis of the quality of the current solution.

66

C Known Weaknesses

1. Execution time is heavily dependent on the total number of scenarios. If this is very
large the deterministic equivalent solvers become impossible to use and Benders’ solver
may become too lengthy for the user’s satisfaction.

2. A procedure to select a useful subset of scenarios by importance or by Monte-Carlo
sampling has been programmed but is not yet tested to any extent.

3. The Benders’ solver is designed for Markovian stochastic data in which the interaction
between stages in the constraint matrix forms a stair pattern. This means that any one
stage is constrained directly by the previous stage decisions only and not by decisions
earlier than the previous stage. Two-stage problems are Markovian. Non-Markovian
multi-stage problems should also be solvable with Benders, but, to our knowledge, no
mathematical proof has been published.

4. In rare cases Benders’ solver may be halted by a cycling status with the true optimum
solution not yet reached (see description of the --ben-theta-lower option). Cycling
may also result from attempt to solve a non-Markovian problem, or from degeneracy
if a feasible solution is difficult to find.

67

D Examples of Use

The following is a simple example of a 4-stage problem:

Core File (MYSP.cor)

NAME MYSP

ROWS

N Z

G R1

G R2

G R3

L R4

G R5

G R6

L R7

G R8

G R9

L R10

COLUMNS

X1 Z 3.0 R1 1.0

X1 R2 1.0

X2 Z 2.0 R1 1.0

Y1 Z -15.0 R2 -3.0

Y1 R3 1.0 R4 1.0

Y1 R5 2.0

Y2 Z -12.0 R5 -1.0

Y2 R6 1.0 R7 1.0

Y2 R8 3.0

Y3 Z -4.0 R8 -1.0

Y3 R9 1.0 R10 1.0

RHS

RHS1 R3 3.2 R4 4.0

RHS1 R6 3.2 R7 7.0

RHS1 R9 1.0 R10 1.0

ENDATA

Time File (MYSP.tim)

TIME MYSP

PERIODS

X1 R1 STAGE001

Y1 R2 STAGE002

Y2 R5 STAGE003

Y3 R8 STAGE004

ENDATA

68

Stoch File (MYSP.sto)

STOCH MYSP

SCENARIOS DISCRETE

SC SCEN0001 ’ROOT’ 0.125 STAGE001

RHS1 R3 3.2

RHS1 R4 4.0

RHS1 R6 3.2

RHS1 R7 7.0

RHS1 R9 4.0

RHS1 R10 8.0

SC SCEN0002 SCEN0001 0.125 STAGE004

RHS1 R9 3.0

RHS1 R10 6.0

SC SCEN0003 SCEN0001 0.125 STAGE003

RHS1 R6 4.8

RHS1 R7 9.0

RHS1 R9 9

RHS1 R10 12.0

SC SCEN0004 SCEN0003 0.125 STAGE004

RHS1 R9 6.4

RHS1 R10 18.0

SC SCEN0005 SCEN0001 0.125 STAGE002

RHS1 R3 1.2

RHS1 R4 4.0

RHS1 R6 2.2

RHS1 R7 7.5

RHS1 R9 3.0

RHS1 R10 6.0

SC SCEN0006 SCEN0005 0.125 STAGE004

RHS1 R9 4.0

RHS1 R10 9.0

SC SCEN0007 SCEN0005 0.125 STAGE003

RHS1 R6 2.8

RHS1 R7 6.0

RHS1 R9 5.2

RHS1 R10 12.0

SC SCEN0008 SCEN0007 0.125 STAGE004

RHS1 R9 4.4

RHS1 R10 8.0

ENDATA

Command

The following command causes all forms of output to be generated and the solution written
to MYSP.sol:

69

fortsp --solve-ev --solve-ws --compute-evpi --compute-vss --sp-alg=benders \

--ben-fffb --vss-fstage --solver=cplex --sol-file=MYSP.sol MYSP

Solution File (MYSP.sol)

Solution file generated from the run is as follows:

HN

Obj -149

Optimal LP solution

Variables

Name Index Stage Value Rscos Lob Upb

X1 0 1 12 0 0 inf

X2 1 1 0 2 0 inf

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 0 1 -0 12 0 inf

END

ExpVal

Obj -152

Optimal LP solution

Variables

Name Index Stage Value Rscos Lob Upb

X1 0 1 12 0 0 inf

X2 1 1 0 2 0 inf

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 0 1 -0 12 0 inf

END

WS

WS Scenario = 1

Obj -140, Prob = 0.125

Optimal LP solution

Variables

Name Index Stage Value Rscos Lob Upb

X1 0 1 12 0 0 inf

X2 1 1 0 2 0 inf

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 0 1 -0 12 0 inf

END

and the WS solutions for 7 more scenarios...

The solution shown above includes only 1st stage values and comprises:

• The WS solution for each scenario

70

• The WS summary result

• The EV solution

• The HN solution

• Values of the stochastic measures EVPI and VSS

The stochastic measures EVPI and VSS are both zero in this simple example since the
values of EEV and WS are both equal to the HN objective. Note that if the option
--vss-fix-fstage had been omitted, then the EEV would in fact have been infeasible
and VSS would have been infinite. Theoretically V SS = 0 is not correct but this value is
probably more important to a user than V SS = infinity.

Solver Output

IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic

Initiative" is accessing CPLEX 12 with option(s): "e m b q ".

Reading time = 0.000943 s.

Stage 1 has 1 rows, 2 columns, and 2 nonzeros.

Stage 2 has 3 rows, 1 columns, and 4 nonzeros.

Stage 3 has 3 rows, 1 columns, and 4 nonzeros.

Stage 4 has 3 rows, 1 columns, and 4 nonzeros.

Problem has 4 stages, 8 scenarios, and 62 random elements.

Solution time = 0.025982 s.

Tried aggregator 1 time.

LP Presolve eliminated 10 rows and 5 columns.

All rows and columns eliminated.

Presolve time = 0.00 sec.

Optimal solution found, objective = -149.

EVPI = 0

VSS = 0

Dimensions of the problems to be solved, run times and stochastic measures are reported.
The output from the external solver (CPLEX) is suppressed for subproblems owing to the
large volume that would be shown otherwise.

Solving the Deterministic Equivalent Problem

In the following command only the HN solution is requested (default), using the deterministic
equivalent algorithm with implicit nonanticipativity. Data is the same as before.

fortsp --sp-alg=deteq --solver=cplex --sol-file=MYSP.sol MYSP

Solution File (MYSP.sol)

HN

Obj -149

Optimal LP solution

71

Variables

Name Index Stage Value Rscos Lob Upb

X1 0 1 12 0 0 inf

X2 1 1 0 0 0 inf

Constraints

Name Index Stage SPrice RowAct Lhs Rhs

R1 0 1 0 -12 0 inf

END

Solver Output

IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic

Initiative" is accessing CPLEX 12 with option(s): "e m b q ".

Reading time = 0.000922 s.

Stage 1 has 1 rows, 2 columns, and 2 nonzeros.

Stage 2 has 3 rows, 1 columns, and 4 nonzeros.

Stage 3 has 3 rows, 1 columns, and 4 nonzeros.

Stage 4 has 3 rows, 1 columns, and 4 nonzeros.

Problem has 4 stages, 8 scenarios, and 62 random elements.

DEP has 43 rows, 16 columns, and 58 nonzeros.

Tried aggregator 1 time.

LP Presolve eliminated 43 rows and 16 columns.

All rows and columns eliminated.

Presolve time = 0.00 sec.

Total real time on 2 threads = 0.00 sec.

Number of iterations = 0.

Solution time = 0.002468 s.

Optimal solution found, objective = -149.

The output from the external LP solver (CPLEX) for the deterministic equivalent problem
is preserved as can be seen above.

72

E Performance on Test Models

The results presented in this section are based on the computational study by Zverovich
et al. (2012).

E.1 Experimental Setup

The computational experiments were performed on a Linux machine with 2.4 GHz Intel
CORE i5 M520 CPU and 6 GiB of RAM. Deterministic equivalents were solved with CPLEX
12.1 dual simplex and barrier optimisers. Crossover to a basic solution was disabled for the
barrier optimiser and the number of threads was limited to 1. For other CPLEX options the
default values were used.

The times are reported in seconds with times of reading input files included. For simplex and
IPM the times of constructing deterministic equivalent problems are also included though
it should be noted that they only amount to small fractions of the total. CPLEX linear
and quadratic programming solver was used to solve master problem and subproblems in
the implementation of Benders decomposition with and without level regularisation. All the
test problems were presented in SMPS format introduced by Birge et al. (1987).

The first-stage solution of the expected value problem was taken as a starting point for the
decomposition methods. The values of the parameters are specified below.

• Benders decomposition with regularisation by the level method:
λ = 0.5,

• Regularised decomposition:
σ = 1, γ = 0.9.

• Trust region method based on l∞ norm:
∆ = 1,∆hi = 103 (except for the saphir problems where ∆hi = 109), ξ = 10−4.

E.2 Data Sets

We considered test problems which were drawn from four different sources described in
Table 11. Table 12 gives the dimensions of these problems.

Most of the benchmark problems have stochasticity only in the right-hand side (RHS).
Notable exception is the SAPHIR family of problems which has random elements both in
the RHS and the constraint matrix.

Table 12: Dimensions of test problems

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

fxm
6 92 114 238 343 1520 2172 12139

16 92 114 238 343 3900 5602 31239

fxmev 1 92 114 238 343 330 457 2589

pltexpa
6 62 188 104 272 686 1820 3703

16 62 188 104 272 1726 4540 9233

73

Table 12: Dimensions of test problems (continued)

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

stormg2

8 185 121 528 1259 4409 10193 27424
27 185 121 528 1259 14441 34114 90903

125 185 121 528 1259 66185 157496 418321
1000 185 121 528 1259 528185 1259121 3341696

airl-first 25 2 4 6 8 152 204 604

airl-second 25 2 4 6 8 152 204 604

airl-randgen 676 2 4 6 8 4058 5412 16228

assets
100 5 13 5 13 505 1313 2621

37500 5 13 5 13 187505 487513 975021

4node

1 14 52 74 186 88 238 756
2 14 52 74 186 162 424 1224
4 14 52 74 186 310 796 2160
8 14 52 74 186 606 1540 4032

16 14 52 74 186 1198 3028 7776
32 14 52 74 186 2382 6004 15264
64 14 52 74 186 4750 11956 30240

128 14 52 74 186 9486 23860 60192
256 14 52 74 186 18958 47668 120096
512 14 52 74 186 37902 95284 239904

1024 14 52 74 186 75790 190516 479520
2048 14 52 74 186 151566 380980 958752
4096 14 52 74 186 303118 761908 1917216
8192 14 52 74 186 606222 1523764 3834144

16384 14 52 74 186 1212430 3047476 7668000
32768 14 52 74 186 2424846 6094900 15335712

4node-base

1 16 52 74 186 90 238 772
2 16 52 74 186 164 424 1240
4 16 52 74 186 312 796 2176
8 16 52 74 186 608 1540 4048

16 16 52 74 186 1200 3028 7792
32 16 52 74 186 2384 6004 15280
64 16 52 74 186 4752 11956 30256

128 16 52 74 186 9488 23860 60208
256 16 52 74 186 18960 47668 120112
512 16 52 74 186 37904 95284 239920

1024 16 52 74 186 75792 190516 479536
2048 16 52 74 186 151568 380980 958768
4096 16 52 74 186 303120 761908 1917232
8192 16 52 74 186 606224 1523764 3834160

16384 16 52 74 186 1212432 3047476 7668016
32768 16 52 74 186 2424848 6094900 15335728

4node-old 32 14 52 74 186 2382 6004 15264

chem 2 38 39 46 41 130 121 289

chem-base 2 38 39 40 41 118 121 277

lands 3 2 4 7 12 23 40 92

lands-blocks 3 2 4 7 12 23 40 92

74

Table 12: Dimensions of test problems (continued)

Stage 1 Stage 2 Deterministic Equivalent

Name Scen Rows Cols Rows Cols Rows Cols Nonzeros

env-aggr 5 48 49 48 49 288 294 876

env-first 5 48 49 48 49 288 294 876

env-loose 5 48 49 48 49 288 294 876

env

15 48 49 48 49 768 784 2356
1200 48 49 48 49 57648 58849 177736
1875 48 49 48 49 90048 91924 277636
3780 48 49 48 49 181488 185269 559576
5292 48 49 48 49 254064 259357 783352
8232 48 49 48 49 395184 403417 1218472

32928 48 49 48 49 1580592 1613521 4873480

env-diss-aggr 5 48 49 48 49 288 294 876

env-diss-first 5 48 49 48 49 288 294 876

env-diss-loose 5 48 49 48 49 288 294 876

env-diss

15 48 49 48 49 768 784 2356
1200 48 49 48 49 57648 58849 177736
1875 48 49 48 49 90048 91924 277636
3780 48 49 48 49 181488 185269 559576
5292 48 49 48 49 254064 259357 783352
8232 48 49 48 49 395184 403417 1218472

32928 48 49 48 49 1580592 1613521 4873480

phone1 1 1 8 23 85 24 93 309

phone 32768 1 8 23 85 753665 2785288 9863176

stocfor1 1 15 15 102 96 117 111 447

stocfor2 64 15 15 102 96 6543 6159 26907

rand0

2000 50 100 25 50 50050 100100 754501
4000 50 100 25 50 100050 200100 1508501
6000 50 100 25 50 150050 300100 2262501
8000 50 100 25 50 200050 400100 3016501

10000 50 100 25 50 250050 500100 3770501

rand1

2000 100 200 50 100 100100 200200 3006001
4000 100 200 50 100 200100 400200 6010001
6000 100 200 50 100 300100 600200 9014001
8000 100 200 50 100 400100 800200 12018001

10000 100 200 50 100 500100 1000200 15022001

rand2

2000 150 300 75 150 150150 300300 6758501
4000 150 300 75 150 300150 600300 13512501
6000 150 300 75 150 450150 900300 20266501
8000 150 300 75 150 600150 1200300 27020501

10000 150 300 75 150 750150 1500300 33774501

saphir

50 32 53 8678 3924 433932 196253 1136753
100 32 53 8678 3924 867832 392453 2273403
200 32 53 8678 3924 1735632 784853 4546703
500 32 53 8678 3924 4339032 1962053 11366603

1000 32 53 8678 3924 8678032 3924053 22733103

75

Table 11: Sources of test problems

Source Reference Comments

1. POSTS
collection

Holmes (1995) Two-stage problems from the
(PO)rtable (S)tochastic program-
ming (T)est (S)et (POSTS)

2. Slptestset
collection

Ariyawansa and Felt
(2004)

Two-stage problems from the col-
lection of stochastic LP test prob-
lems

3. Random
problems

Kall and Mayer
(1998)

Artificial test problems generated
with pseudo random stochastic
LP problem generator GENSLP

4. SAMPL
problems

König et al. (2007),
Valente et al. (2008)

Problems instantiated from the
SAPHIR gas portfolio planning
model formulated in Stochastic
AMPL (SAMPL)

It should be noted that the problems generated with GENSLP do not possess any internal
structure inherent in real-world problems. However they are still useful for the purposes of
comparing scale-up properties of algorithms.

E.3 Computational Results

The computational results are presented in Tables 13 and 14. Iter denotes the number of
iterations. For decomposition methods this is the number of master iterations.

Finally we present the results in the form of performance profiles. The performance profile
for a solver is defined by Dolan and Moré (2002) as the cumulative distribution function
for a performance metric. We use the ratio of the solving time versus the best time as the
performance metric. Let P and M be the set of problems and the set of solution methods
respectively. We define by tp,m the time of solving problem p ∈ P with method m ∈M . For
every pair (p,m) we compute performance ratio

rp,m =
tp,m

min{tp,m|m ∈M}
,

If method m failed to solve problem p the formula above is not defined. In this case we set
rp,m :=∞.

The cumulative distribution function for the performance ratio is defined as follows:

ρm(τ) =
|{p ∈ P |rp,m ≤ τ}|

|P |

We calculated performance profile of each considered method on the whole set of test prob-
lems. These profiles are shown in Figure 6. The value of ρm(τ) gives the probability that
method m solves a problem within a ratio τ of the best solver. For example according to
Figure 6 level method was the first in more than 30% of cases and solved all the problems
within a ratio 6 of the best time.

76

The notable advantages of performance profiles over other approaches to performance com-
parison are as follows. Firstly, they minimize the influence of a small subset of problems
on the benchmarking process. Secondly, there is no need to discard solver failures. Thirdly,
performance profiles provide a visualisation of large sets of test results as we have in our
case.

As can be seen from Figure 6, while in most cases the performance of CPLEX barrier
optimiser is better it was not able to solve some of the problems. Several large instances
were not solved due to high memory requirements of constructing and solving deterministic
equivalent. Other failures were caused by numerical difficulties. The performance profile of
pure Benders decomposition is dominated by the the level method profile.

Table 13: Performance of DEP solution methods and level regular-
isation

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

fxm
6 0.06 1259 0.05 17 0.15 20 18417.1

16 0.22 3461 0.13 23 0.15 20 18416.8

fxmev 1 0.01 273 0.01 14 0.13 20 18416.8

pltexpa
6 0.01 324 0.03 14 0.02 1 -9.47935

16 0.01 801 0.08 16 0.02 1 -9.66331

stormg2

8 0.08 3649 0.25 28 0.16 20 15535200
27 0.47 12770 2.27 27 0.31 17 15509000

125 5.10 70177 8.85 57 0.93 17 15512100
1000 226.70 753739 137.94 114 6.21 21 15802600

airl-first 25 0.01 162 0.01 9 0.03 17 249102

airl-second 25 0.00 145 0.01 11 0.03 17 269665

airl-randgen 676 0.25 4544 0.05 11 0.22 18 250262

assets
100 0.02 494 0.02 17 0.03 1 -723.839

37500 1046.85 190774 6.37 24 87.55 2 -695.963

4node

1 0.01 110 0.01 12 0.06 21 413.388
2 0.01 196 0.01 14 0.10 42 414.013
4 0.01 326 0.02 17 0.11 45 416.513
8 0.03 825 0.05 18 0.10 45 418.513

16 0.06 1548 0.11 17 0.15 44 423.013
32 0.16 2948 0.40 15 0.22 51 423.013
64 0.72 7185 0.44 17 0.36 54 423.013

128 2.30 12053 0.50 26 0.47 50 423.013
256 7.69 31745 1.05 30 0.87 48 425.375
512 57.89 57200 2.35 30 2.12 51 429.963

1024 293.19 133318 5.28 32 3.95 53 434.112
2048 1360.60 285017 12.44 36 7.82 49 441.738
4096 - - 32.67 46 9.12 46 446.856
8192 - - 53.82 45 22.68 55 446.856

16384 - - 113.20 46 45.24 52 446.856
32768 - - 257.96 48 127.86 62 446.856

77

Table 13: Performance of DEP solution methods and level regular-
isation (continued)

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

4node-base

1 0.01 111 0.01 11 0.04 16 413.388
2 0.01 196 0.01 14 0.06 29 414.013
4 0.01 421 0.02 14 0.07 30 414.388
8 0.03 887 0.04 15 0.10 35 414.688

16 0.06 1672 0.11 17 0.10 30 414.688
32 0.15 3318 0.40 15 0.16 37 416.6
64 0.49 7745 0.36 13 0.22 33 416.6

128 1.58 17217 0.33 19 0.35 37 416.6
256 4.42 36201 0.81 23 0.53 31 417.162
512 22.44 80941 2.20 29 1.45 37 420.293

1024 141.91 187231 5.21 32 3.33 41 423.05
2048 694.89 337082 11.12 32 6.13 42 423.763
4096 - - 27.03 37 10.60 39 424.753
8192 - - 51.29 40 24.99 48 424.775

16384 - - 177.81 73 47.31 41 424.775
32768 - - 242.91 48 102.29 49 424.775

4node-old 32 0.20 3645 0.49 18 0.09 20 83094.1

chem 2 0.00 29 0.00 11 0.03 15 -13009.2

chem-base 2 0.00 31 0.00 11 0.05 14 -13009.2

lands 3 0.00 21 0.00 9 0.02 10 381.853

lands-blocks 3 0.00 21 0.00 9 0.02 10 381.853

env-aggr 5 0.01 117 0.01 12 0.04 16 20478.7

env-first 5 0.01 112 0.01 11 0.02 1 19777.4

env-loose 5 0.01 112 0.01 12 0.02 1 19777.4

env

15 0.01 321 0.01 16 0.05 15 22265.3
1200 1.38 23557 1.44 34 1.73 15 22428.9
1875 2.90 36567 2.60 34 2.80 15 22447.1
3780 11.21 73421 7.38 40 5.47 15 22441
5292 20.28 102757 12.19 42 7.67 15 22438.4
8232 62.25 318430 - - 12.58 15 22439.1

32928 934.38 1294480 - - 75.67 15 22439.1

env-diss-aggr 5 0.01 131 0.01 9 0.05 22 15963.9

env-diss-first 5 0.01 122 0.01 9 0.04 12 14794.6

env-diss-loose 5 0.01 122 0.01 9 0.03 5 14794.6

env-diss

15 0.01 357 0.02 13 0.10 35 20773.9
1200 1.96 26158 1.99 50 2.80 35 20808.6
1875 4.41 40776 3.63 53 4.49 36 20809.3
3780 16.94 82363 9.32 57 8.87 36 20794.7
5292 22.37 113894 16.17 66 12.95 38 20788.6
8232 70.90 318192 - - 22.49 41 20799.4

32928 1369.97 1296010 - - 112.46 41 20799.4

phone1 1 0.00 19 0.01 8 0.02 1 36.9

phone 32768 - - 50.91 26 48.23 1 36.9

78

Table 13: Performance of DEP solution methods and level regular-
isation (continued)

DEP - Simplex DEP - IPM Level Optimal

Name Scen Time Iter Time Iter Time Iter Value

stocfor1 1 0.00 39 0.01 11 0.03 6 -41132

stocfor2 64 0.12 2067 0.08 17 0.12 9 -39772.4

rand0

2000 373.46 73437 9.41 33 6.10 44 162.146
4000 1603.25 119712 34.28 62 10.06 32 199.032
6000 - - 48.84 60 21.17 51 140.275
8000 - - 56.89 49 28.86 50 170.318

10000 - - 98.51 71 52.31 71 139.129

rand1

2000 - - 39.97 24 52.70 74 244.159
4000 - - 92.71 28 72.30 59 259.346
6000 - - 158.24 32 103.00 58 297.563
8000 - - 228.68 34 141.81 65 262.451

10000 - - 320.10 39 181.98 63 298.638

rand2

2000 - - 102.61 22 145.22 65 209.151
4000 - - 225.71 24 170.08 42 218.247
6000 - - 400.52 28 369.35 52 239.721
8000 - - 546.98 29 369.01 44 239.158

10000 - - 754.52 32 623.59 52 231.706

saphir

50 269.17 84727 - - 341.86 43 129505000
100 685.50 152866 - - 700.44 46 129058000
200 - - 549.45 167 - - 141473000
500 - - - - 608.48 44 137871000

1000 - - - - 804.11 46 133036000

Table 14: Performance of decomposition methods

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

fxm
6 0.08 25 0.15 20 0.09 22 0.05 5

16 0.09 25 0.15 20 0.11 22 0.07 5

fxmev 1 0.08 25 0.13 20 0.08 22 0.05 5

pltexpa
6 0.02 1 0.02 1 0.02 1 0.03 1

16 0.02 1 0.02 1 0.02 1 0.03 1

stormg2

8 0.14 23 0.16 20 0.08 9 0.10 10
27 0.47 32 0.31 17 0.18 10 0.23 11

125 1.73 34 0.93 17 0.50 8 0.89 12
1000 11.56 41 6.21 21 3.38 6 7.30 11

airl-first 25 0.04 16 0.03 17 0.03 6 0.03 10

airl-second 25 0.02 10 0.03 17 0.02 4 0.03 5

airl-randgen 676 0.22 18 0.22 18 0.22 6 0.29 6

assets
100 0.02 1 0.03 1 0.03 1 0.02 1

37500 87.68 2 87.55 2 172.23 2 114.38 1

79

Table 14: Performance of decomposition methods (continued)

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

4node

1 0.03 24 0.06 21 0.03 8 0.03 15
2 0.04 38 0.10 42 0.02 16 0.05 29
4 0.04 41 0.11 45 0.03 14 0.05 19
8 0.07 64 0.10 45 0.03 13 0.05 16

16 0.11 67 0.15 44 0.04 12 0.05 13
32 0.23 100 0.22 51 0.05 10 0.07 13
64 0.27 80 0.36 54 0.08 11 0.12 14

128 0.39 74 0.47 50 0.15 11 0.19 14
256 0.95 71 0.87 48 0.20 7 0.29 9
512 3.72 92 2.12 51 0.46 7 0.62 9

1024 5.14 70 3.95 53 0.42 3 1.23 10
2048 11.78 83 7.82 49 1.30 4 1.22 5
4096 18.46 89 9.12 46 2.79 3 2.03 4
8192 46.56 106 22.68 55 9.87 3 6.59 4

16384 99.00 110 45.24 52 38.28 3 27.50 4
32768 194.68 122 127.86 62 299.85 3 222.61 4

4node-base

1 0.03 31 0.04 16 0.03 21 0.03 14
2 0.04 44 0.06 29 0.03 19 0.05 19
4 0.06 58 0.07 30 0.04 20 0.07 34
8 0.05 47 0.10 35 0.04 19 0.08 28

16 0.08 56 0.10 30 0.06 21 0.11 28
32 0.17 63 0.16 37 0.07 13 0.18 22
64 0.23 61 0.22 33 0.17 19 0.30 21

128 0.39 65 0.35 37 0.34 19 0.63 23
256 0.89 66 0.53 31 0.45 11 1.81 26
512 3.27 84 1.45 37 1.84 14 4.98 29

1024 9.57 115 3.33 41 5.53 13 9.17 17
2048 19.72 142 6.13 42 21.82 13 31.08 21
4096 38.51 174 10.60 39 85.68 12 146.50 18
8192 133.45 290 24.99 48 354.05 14 - -

16384 164.07 175 47.31 41 1430.72 13 - -
32768 314.31 191 102.29 49 - - - -

4node-old 32 0.08 30 0.09 20 0.04 7 0.09 10

chem 2 0.04 7 0.03 15 0.03 13 0.04 19

chem-base 2 0.02 6 0.05 14 0.02 13 0.04 22

lands 3 0.02 8 0.02 10 0.02 5 0.03 17

lands-blocks 3 0.01 8 0.02 10 0.02 5 0.03 17

env-aggr 5 0.02 3 0.04 16 0.02 3 0.03 5

env-first 5 0.02 1 0.02 1 0.02 1 0.02 1

env-loose 5 0.01 1 0.02 1 0.02 1 0.02 1

env

15 0.04 3 0.05 15 0.03 3 0.03 5
1200 0.34 3 1.73 15 0.48 3 0.76 5
1875 0.57 3 2.80 15 0.90 3 1.50 5
3780 1.26 3 5.47 15 2.48 3 3.79 5
5292 1.96 3 7.67 15 4.51 3 5.89 5
8232 3.70 3 12.58 15 10.67 3 12.54 5

32928 39.88 3 75.67 15 211.90 3 212.05 5

80

Table 14: Performance of decomposition methods (continued)

Benders Level TR RD

Name Scen Time Iter Time Iter Time Iter Time Iter

env-diss-aggr 5 0.03 9 0.05 22 0.03 9 0.03 17

env-diss-first 5 0.02 14 0.04 12 0.02 4 0.03 4

env-diss-loose 5 0.03 15 0.03 5 0.02 4 0.02 4

env-diss

15 0.05 27 0.10 35 0.05 18 0.07 12
1200 1.13 24 2.80 35 2.25 18 3.45 19
1875 2.50 29 4.49 36 5.52 19 4.52 15
3780 5.04 29 8.87 36 20.23 19 8.98 11
5292 8.14 34 12.95 38 40.39 17 17.90 13
8232 14.21 35 22.49 41 119.88 16 99.19 23

32928 79.52 35 112.46 41 - - - -

phone1 1 0.02 1 0.02 1 0.02 1 0.02 1

phone 32768 48.34 1 48.23 1 73.45 1 73.75 1

stocfor1 1 0.02 6 0.03 6 0.02 2 0.02 2

stocfor2 64 0.10 7 0.12 9 0.18 14 0.23 18

rand0

2000 10.42 80 6.10 44 30.33 9 93.78 16
4000 19.97 69 10.06 32 82.75 8 591.45 14
6000 41.82 108 21.17 51 275.97 9 - -
8000 65.51 127 28.86 50 423.51 9 - -

10000 153.07 230 52.31 71 871.00 10 - -

rand1

2000 265.14 391 52.70 74 155.81 12 361.54 17
4000 587.22 502 72.30 59 508.18 11 - -
6000 649.58 385 103.00 58 937.74 11 - -
8000 917.24 453 141.81 65 1801.43 9 - -

10000 1160.62 430 181.98 63 - - - -

rand2

2000 1800.00 818 145.22 65 334.36 12 794.31 17
4000 1616.56 414 170.08 42 813.49 11 - -
6000 - - 369.35 52 - - - -
8000 - - 369.01 44 - - - -

10000 - - 623.59 52 - - - -

saphir

50 733.37 128 341.86 43 578.87 110 - -
100 1051.89 123 700.44 46 - - - -
200 - - - - - - - -
500 1109.48 122 608.48 44 1283.97 99 - -

1000 1444.17 124 804.11 46 - - - -

E.4 Choice of IPM Solver

In order to justify the use of CPLEX IPM in our experiments we compared its performance to
another state-of-the-art interior point solver. The second solver, HOPDM (Gondzio, 1995;
Colombo and Gondzio, 2008), is an implementation of the infeasible primal-dual interior
point method. Depending on the problem, it uses either the normal equations with Schur
complement or augmented system factorisation.

The results summarised in Table 15 show that while it took HOPDM on average less itera-
tions to solve a problem, CPLEX was faster in our benchmarks. This can be explained by

81

100 101 102

0

0.2

0.4

0.6

0.8

1

τ

ρ
m

(τ
)

Benders
Level
TR
RD

Simplex
IPM

Figure 6: Performance profiles

the latter being better optimised to the underlying hardware. In particular, CPLEX uses
high performance Intel Math Kernel Library which is tuned for the hardware we were using
in the tests.

Table 15: Summary of CPLEX and HOPDM perfor-
mance

CPLEX HOPDM

Average Iterations 29 21
Average Time 56.66 170.50
Solved Problems 87 78

E.5 Comments on Scale-Up Properties and on Accuracy

We performed a set of experiments recording the change in the gap between lower and
upper bounds on objective function in the decomposition methods. The results are shown
in Figures 7 – 10.

The computational results given in the previous section where obtained using the relative
stopping tolerance ε = 10−5 for the Benders decomposition with and without regularisation
by the level method, i.e. the method terminated if (z∗ − z∗)/(|z∗| + 10−10) ≤ ε, where z∗
and z∗ are, respectively, lower and upper bounds on the value of the objective function. The
stopping criteria in the trust region algorithm and regularised decomposition are different
because these methods do not provide global lower bound. Therefore ε was set to a lower
value of 10−6 with the following exceptions that were made to achieve the desirable precision:

• env-diss with 8232 scenarios: ε = 10−10 in RD,

• saphir: ε = 10−10 in RD and TR.

For CPLEX barrier optimiser the default complementarity tolerance was used as a stopping
criterion. 82

0 5 10 15 20 25 30 35 40 45
10−6

10−5

10−4

10−3

10−2

Iteration

G
ap

Benders
Level

Figure 7: Gap between lower and upper bounds for storm-1000 problem

0 20 40 60 80 100 120
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

Iteration

G
ap

Benders
Level

Figure 8: Gap between lower and upper bounds for 4node-32768 problem

83

0 50 100 150 200 250 300 350 400 450
10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration

G
ap

Benders
Level

Figure 9: Gap between lower and upper bounds for rand1-10000 problem

20 30 40 50 60 70 80 90 100 110 120 130
10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

G
ap

Benders
Level

Figure 10: Gap between lower and upper bounds for saphir-1000 problem

84

0 0.5 1 1.5 2 2.5 3 3.5

·104

0

50

100

150

200

250

300

Scenarios

T
im

e,
s

Benders
Level
TR
RD

Simplex
IPM

Figure 11: Time vs the number of scenarios on the 4node problems

85

	Introduction to FortSP
	The Problem
	Command-line Interface
	System Architecture
	Data Provision
	Solution Methods
	External Solvers

	Mathematical Description of the Problem
	Scenario Tree
	Two-stage Recourse Models
	Multi-stage Recourse Models
	Chance and Integrated Chance Constraints

	Data Provision in SMPS
	SMPS Input Format
	Core File and Random Parameter Values
	Time File
	Stoch File
	CHANCE and ICC Sections
	Objective Sense

	Data Provision in SAMPL
	SAMPL Input Format
	The solve Statement
	The print Statement
	The write Statement
	The model and data Statements
	The option Statement
	Example

	Stochastic Programming Solution Methods (Continuous)
	Deterministic Equivalent
	Cutting Plane (Benders)
	Generic L-Shaped Method
	The L-shaped method
	Regularisations
	Remarks

	Stochastic Integer Programming Solution Methods
	Deterministic Equivalent
	Integer L-Shaped Method
	VNDS Heuristic

	Computing Stochastic Measures
	Ancillary Algorithms - EV and WS
	Stochastic Measures - EVPI and VSS
	Algorithm Controls and Options

	External Solvers
	Solvers Available
	Solver Options and Controls

	Solution File and Logging
	Output Controls and Options
	Solution Format for Second Stage

	References
	Option Summary
	Solution Methods for Two-Stage Stochastic Programming Problems
	Deterministic Equivalent
	Decomposition Methods
	Regularisation and trust region methods
	Regularised decomposition
	Regularisation: The level method
	Regularisation: Trust-region

	Known Weaknesses
	Examples of Use
	Performance on Test Models
	Experimental Setup
	Data Sets
	Computational Results
	Choice of IPM Solver
	Comments on Scale-Up Properties and on Accuracy

