FortSP: A Stochastic Programming Solver Version 1.2

January 31, 2014

Optilirisk

http://www.optirisk-systems.com

CARISMA

http://www.carisma.brunel.ac.uk

Version: 1.2

Prepared by
Victor Zverovich, Cristiano Arbex Valle, Francis Ellison and Gautam Mitra OptiRisk Systems

Copyright © 2013 OptiRisk Systems

DO NOT DUPLICATE WITHOUT PERMISSION

All brand names, product names are trademarks or registered trademarks of their respective holders.

The material presented in this manual is subject to change without prior notice and is intended for general information only. The views of the authors expressed
in this document do not represent the views and/or opinions of OptiRisk Systems.

$\square \operatorname{SiMSO}_{\text {SYSTEMS }}^{\text {Pi }}$

OptiRisk Systems
One Oxford Road
Uxbridge, Middlesex, UB9 4DA
United Kingdom
www.optirisk-systems.com
+44 (0) 1895256484

Acknowledgements

We would like to acknowledge the following persons for their contribution to the software:

- Originally implemented by Dr Chandra Poojari and Dr Frank Ellison
- Subsequent extensive reengineering and updates made by Dr Victor Zverovich

We also acknowledge Dr Csaba I. Fábián for his contribution in respect of Level Decomposition / Regularisation methods, and Dr Suvrajeet Sen. Finally, we thank Cristiano Arbex Valle who is now the custodian of Fortsp.

Preface

FortSP is a large scale stochastic programming (SP) solver, which processes linear and mixed integer scenario-based SP problems with recourse. It also supports scenario-based problems with chance constraints and integrated chance constraints. Several different SP algorithms are available for the solution, stochastic measures such as expected value of perfect information (EVPI) and value of the stochastic solution (VSS) may be calculated, and it can use CPLEX, FortMP or Gurobi as its embedded, underlying solver engine.

Contents

1 Introduction to FortSP 6
1.1 The Problem 6
1.2 Command-line Interface 6
1.3 System Architecture 7
1.4 Data Provision 8
1.5 Solution Methods 8
1.6 External Solvers 10
2 Mathematical Description of the Problem 11
2.1 Scenario Tree 11
2.2 Two-stage Recourse Models 11
2.3 Multi-stage Recourse Models 13
2.4 Chance and Integrated Chance Constraints 14
3 Data Provision in SMPS 16
3.1 SMPS Input Format 16
3.2 Core File and Random Parameter Values 16
3.3 Time File 17
3.4 Stoch File 18
3.5 CHANCE and ICC Sections 22
3.6 Objective Sense 23
4 Data Provision in SAMPL 24
4.1 SAMPL Input Format 24
4.2 The solve Statement 24
4.3 The print Statement 24
4.4 The write Statement 24
4.5 The model and data Statements 25
4.6 The option Statement 25
4.7 Example 25
5 Stochastic Programming Solution Methods (Continuous) 30
5.1 Deterministic Equivalent 30
5.2 Cutting Plane (Benders) 30
5.3 Generic L-Shaped Method 30
5.4 The L-shaped method 33
5.5 Regularisations 33
5.6 Remarks 37
6 Stochastic Integer Programming Solution Methods 38
6.1 Deterministic Equivalent 38
6.2 Integer L-Shaped Method 38
6.3 VNDS Heuristic 38
7 Computing Stochastic Measures 41
7.1 Ancillary Algorithms - EV and WS 41
7.2 Stochastic Measures - EVPI and VSS 41
7.3 Algorithm Controls and Options 41
8 External Solvers 45
8.1 Solvers Available 45
8.2 Solver Options and Controls 45
9 Solution File and Logging 48
9.1 Output Controls and Options 48
9.2 Solution Format for Second Stage 49
References 51
A Option Summary 54
B Solution Methods for Two-Stage Stochastic Programming Problems 60
B. 1 Deterministic Equivalent 60
B. 2 Decomposition Methods 61
B. 3 Regularisation and trust region methods 63
B. 4 Regularised decomposition 63
B. 5 Regularisation: The level method 64
B. 6 Regularisation: Trust-region 66
C Known Weaknesses 67
D Examples of Use 68
E Performance on Test Models 73
E. 1 Experimental Setup 73
E. 2 Data Sets 73
E. 3 Computational Results 76
E. 4 Choice of IPM Solver 81
E. 5 Comments on Scale-Up Properties and on Accuracy 82

1 Introduction to FortSP

1.1 The Problem

FortSP is a solver for stochastic linear, and stochastic mixed integer programs. In such a problem the decision variables are governed by linear constraints, with a linear expression for the objective. Decision variables may be continuous, binary or general integer. Certain data values will be unknown precisely, and only represented by a discrete range with a probability given for each set of uncertain values. Knowledge of the random values will become known in a stage-by-stage progression, and in recourse problems there will be decision variables reserved for each stage which adapt the solution to unfolding events. User may add a rider to some constraints that they need only hold with a certain probability in the case of chance constraints or with a limit on expected of shortfall or surplus in the case of integrated chance constraints.

Recourse Problems

A recourse problem is one in which only some decision variables must be fixed immediately. Other variables are fixed in stages - those of one period taking into account the scenario values that have become known in current and in previous stages, but with future stages still unknown. These postponed decisions are known as recourse variables.

Single Stage

A single-stage problem is the one which has no recourse variables, i.e. all decision variables must be defined without knowing the realisations of random values.

Chance and Integrated Chance Constraints

These appear as normal constraints, but whether satisfied or not is subject to the uncertainty. Chance constraints need only hold with a certain probability in the final solution. Integrated chance constraints limit the expected violation of the underlying inequalities. The expected violation can be either expected shorfall or surplus depending on the type of the underlying constraint. FortSP allows these types of constraints in single and two-stage problems only.

1.2 Command-line Interface

The fortsp executable provides a command-line interface (CLI) to all the features of FortSP. It can be used to solve SP problems, compute stochastic measures and generate solution reports.

Usage:

```
fortsp [options] <smps-basename>
fortsp [options] <core-file> <stoch-file> <time-file>
```

The first form can be used if the SMPS filenames have standard extensions namely cor for the core file, sto for the stoch file and tim for the time file and they are otherwise equal. The common part of the filenames without extensions is referred to as <smps-basename>. Alternatively it is possible to specify all three filenames as arguments to the fortsp executable.

Figure 1: FortSP system architecture

Examples:

```
fortsp sgpf5y3
fortsp fxm.cor fxm2-6.sto fxm2.tim
```

Options start with -- and may have an argument separated from the name with $=$, for example, --solver=cplex. Both option names and arguments are case sensitive except for the arguments that represent paths on a case-insensitive filesystem. For options that take values 0 or 1 there is a shorthand notation --<option> in CLI which is equivalent to $--<$ option>=1, for example, - -compute-evpi. Options are described in the subsequent sections and the complete list can be found in Appendix A. If no options specified fortsp uses the default algorithm which is problem-dependent to solve the given problem.

1.3 System Architecture

Figure 1 gives an architecture of the FortSP solver system.
Figure 2 is a simplified summary of the SP algorithm structure. The actual path taken by execution depends on a variety of factors, for example:

- The model types chosen for solution (one or more of HN, EV, WS)
- The model types needed for stochastic measures (EVPI and VSS)
- The algorithm to solve the HN model

However there are various limitations to bear in mind

- The special cutting plane algorithm applies only to single-stage problems with ICC. Other problems with chance and integrated chance constraints must be solved using deterministic equivalent approach.

1.4 Data Provision

FortSP accepts input in the SMPS format directly and in the SAMPL format through a separate SAMPL translator. It is also possible to use FortSP as a library with an application programming interface (API) in C.

SMPS Format

FortSP uses a subset of SMPS (Birge et al., 1987), which is an early format for stochastic programming problems. In this format three separate data files are provided:

- Core file: a generic presentation of the variables and constraints in MPS (MPSX) layout. Data values need not feature any particular scenario, but every random data element must be represented.
- Time file: specifying the subdivisions of the core file that belong to each stage.
- Stoch file: specifying every scenario, the values of random data, and probabilities. Only discrete forms of random distributions are considered.

SAMPL Format

AMPL is an algebraic modelling language for mathematical programming problems. SAMPL (Valente et al., 2009) is an extension of AMPL for stochastic programming. It allows representation of SP problems using syntax similar to the algebraic notation which is more economical and intelligible compared to SMPS. Unlike SMPS the whole problem can be specified in one file or divided into several files according to user requirements. Through the interactive environment SAMPL makes it easy to create or import models and data, specify options, solve the problems and examine solutions.

FortSP Library Interface

FortSP provides a powerful C API which gives programmatic access to most of the functionality of the solver.

1.5 Solution Methods

A variety of stochastic algorithms are available and these can obtain solutions in one of the following forms:

- 'Here and Now' (HN) solution
- 'Wait and See' (WS) solution
- 'Expected Value' (EV) solution

Figure 2: Simplified FortSP flowchart

HN solution provides the most exact answer to the original SP problem (also the most difficult).

The FortSP solver supports the following classes of problems and algorithms:

- Two-stage linear SP recourse problems (Here and Now)
- Benders decomposition (L-shaped method)
- Variant of the level decomposition of Fábián and Szőke (2007)
- Trust region method of Linderoth and Wright (2003)
- Regularised decomposition
- Deterministic equivalent reformulation
- Two-stage mixed integer SP problems
- Integer L-shaped method
- Deterministic equivalent reformulation
- Multistage mixed integer SP problems
- Deterministic equivalent reformulation
- Multistage linear SP problems
- Nested Benders decomposition
- Deterministic equivalent reformulation
- Chance constraints
- Deterministic equivalent reformulation
- Integrated chance constraints
- Cutting-plane algorithm of Klein Haneveld and Vlerk (2002)
- Deterministic equivalent reformulation

The following stochastic measures may be derived from the solutions of HN, WS and EV problems:

- The expected value of perfect information (EVPI)
- The value of the stochastic solution (VSS).

1.6 External Solvers

FortSP supports several external solvers that are invoked to optimise deterministic equivalent problems or subproblems in decomposition methods. Those listed below are connected through the efficient plug-in interface:

- FortMP (Ellison et al., 2008)
- CPLEX
- Gurobi

Figure 3: Scenario tree example

2 Mathematical Description of the Problem

Refer to Introduction to Stochastic Programming (Birge and Louveaux, 1997) for a detailed problem statement and mathematical background.

2.1 Scenario Tree

Stochastic programming can handle large numbers of decision variables and capture their complex interrelationships stated as constraints in algebraic form. The essence of SP is the confluence of optimum decision-taking model with the modelling of the random parameter behaviour. In order to model the behaviour of random parameter values we consider a limited, discrete sample of the events that may occur between any two stages of the decisiontaking process, and this gives rise to a tree-like branching illustrated in figure 3.

Figure 3 illustrates the scenario tree of a 4 -stage decision problem. Each node represents an optimisation problem for the decisions to be taken there, and the bundle of arcs leading from the node represents the sampled behaviour in that situation. By scenario is meant the unfolding of all events (arcs) connecting the current (first) decision (root node) to some decision in the final stage (leaf node). In general, decision tree analysis can handle only small data sets, so for realistic problem sizes there is a need for multi-stage SP.

2.2 Two-stage Recourse Models

A two-stage planning horizon is one where immediate (Here and Now) decisions (x_{1}) have to be taken before all the problem elements have become known. Once this happens there are further, second-stage decisions $\left(x_{2}\right)$ to be taken according to the newly discovered events. After splitting the problem into known and unknown (uncertain) elements we have a firststage problem as follows:

\[

\]

where the function θ is the expectation of second-stage utility, given the decisions x_{1} in the first stage.

If we select a particular scenario, this utility function will be expressed as follows:

$$
\begin{array}{lll}
\text { Minimize } & c_{2}^{T} x_{2} & \\
\text { Subject to } & g_{2} \leq A_{21} x_{1}+A_{22} x_{2} & \leq h_{2} \tag{2}\\
& l_{2} \leq x_{2} & \leq u_{2}
\end{array}
$$

without any further θ-function. Now since x_{1} is known, the second-stage problem for all scenarios can be solved, from which we can derive the expectation of utility (probabilityweighted average of the minima), and this defines the θ-function in the first-stage objective.

To express this more exactly we assume the (hypothetical) existence of separate second-stage decision variables $x_{2 s}$ for each scenario $s=1,2, \ldots, S$. Couple these with corresponding values for the uncertain data, and the second-stage model for each scenario becomes:

$$
\begin{array}{lll}
\text { Minimize } & & c_{2 s}^{T} x_{2 s} \\
\text { Subject to } & g_{2 s} & \leq A_{21 s} x_{1}+A_{22 s} x_{2 s} \tag{3}
\end{array} \leq h_{2 s} \leq \leq u_{2 s}
$$

So for the expectation we combine the probability-weighted minima of all the second-stage models, and the entire problem becomes:

\[

\]

where p_{s} is the probability of scenario s. This formulation of the problem is known as the Deterministic Equivalent (DEQ).

It was observed in the 50 's that the form (4) is precisely the form solvable with the dual of Danzig-Wolfe decomposition, also known as Benders' decomposition or the L-shaped method. In this method a solution x_{1} to the model (1) allows dual-solutions of model (3) to be calculated and applied to form an aggregated 'cut', which is a constraint added to model (1) - thus giving a new solution x_{1}, and so an iterative process is developed. Theory shows that the iterations converge to precisely the solution of the deterministic equivalent model (4).

It would seem simpler just to solve the DEQ model (4) were it not for the greatly increased size of the problem. However, the DEQ is useful if the number of scenarios is fairly small.

There is a second form of the DEQ that is obtained by postulating separate stage 1 decision variables for each scenario, and equating them by adding explicit constraints

$$
x_{1 s_{1}}=x_{1 s_{2}}
$$

for all pairs of scenarios s_{1} and s_{2} (enough pairs to make all scenario-values the same). This is known as DEQ with Explicit Non-Anticipativity (NA). The original form (4) is known as DEQ with Implicit NA. For these large problems Interior Point Method (IPM) is usually chosen in the solution. However, Implicit NA formulation may give difficulty with IPM owing to column density, and this can be overcome in some cases by using Explicit NA.

2.3 Multi-stage Recourse Models

In a multi-stage (multi-period) planning horizon with more than two stages decisions must be taken at each stage with knowledge only of the uncertainty in that stage and in previous stages. We can easily extend the modelling shown in (1) and (3) by considering a θ-function in all stages except the last. Thus stage 1 is:

$$
\begin{array}{llll}
\text { Minimize } & & c_{1}^{T} x_{1}+\theta_{1}\left(x_{1}\right) & \\
\text { Subject to } & g_{1} & \leq A_{11} x_{1} & \leq h_{1} \tag{5}\\
& l_{1} \leq x_{1} & \leq u_{1}
\end{array}
$$

The stages are now given by subscript t where $t=1, \ldots, T$, and so for an intermediate stage $t<T$ we can say:

$$
\begin{array}{lll}
\text { Minimize } & & c_{t}^{T} x_{t}+\theta_{t}\left(x 1, x 2, \ldots, x_{t}\right) \\
\text { Subject to } & g_{t} \leq A_{t 1} x_{1}+A_{t 2} x_{2}+\ldots+A_{t t} x_{t} & \leq h_{t} \tag{6}\\
& l_{t} \leq x_{t} & \leq u_{t}
\end{array}
$$

with variables $x_{1}, x_{2}, \ldots, x_{t-1}$ known already. For the last stage we have:

$$
\begin{array}{lll}
\text { Minimize } & c_{T}^{T} x_{T} \\
\text { Subject to } & g_{T} \leq A_{T 1} x_{1}+A_{T 2} x_{2}+\ldots+A_{T T} x_{T} & \leq h_{T} \tag{7}\\
& l_{T} \leq x_{T} & \leq u_{T}
\end{array}
$$

with variables $x_{1}, x 2, \ldots, x_{T-1}$ known already. Note that each θ-function depends on the decisions in that stage and in previous stages, up until the last stage, which has no θ function. The constraints of the t-th stage involve $x_{t}, x_{t-1}, \ldots, x_{1}$ (see ${ }^{1}$).

The solution of such a model requires 'nesting'. A specific model corresponds to a specific node of the scenario tree (exampled in figure 3). Hence to solve the sub-model for a given node we need the values of decisions along the path leading up to that node, and all the solutions to the sub-tree of nodes leading from it. Given a proposed solution for everything up to stage $T-1$, we can adjust the solution of stage $T-1$ by applying 2 -stage Benders to each bundle of paths leading from stage $T-1$. The same process applies to stage $T-2$ by nesting the last-stage 2-stage Benders inside to form a 3 -stage Benders solver. And so on for

[^0]the whole tree. Actually the multi-stage Benders algorithm is much faster, using the 'Fast Forward, Fast Back' algorithm described in (Birge and Louveaux, 1997) chapter 7.

Solving multi-stage problems with Deterministic Equivalent also involves nesting, and here the nesting is in the formulation. Consider the (hypothetical) existence of scenario decision variables for every sub-path on the scenario tree connecting one node to its parent, and remember that the probability of that path is the sum of the probabilities of all paths leading through it. Assemble the constraints for all the scenarios and combine in the objective the sub-path-probability-weighted sum of all scenario objectives (too complicated to express here in mathematical terminology). This gives the implicit NA version of the DEQ. For the explicit NA version we consider separate variables for every scenario in every stage, and add all the constraints needed to equate all the variables for different scenarios that lie along the same sub-path everywhere in the tree.

2.4 Chance and Integrated Chance Constraints

In addition to multistage recourse problems described above, FortSP supports single and two-stage problems with individual chance constraints and integrated chance constraints (ICC). By a singe-stage SP problem we mean the one in which all decisions take place in the first stage and then the random parameters realise. The difference from a two-stage problem is that the latter has also a recourse action.

A probabilistic or chance constraint is a constraint that must hold with some minimum probability level. In the framework of model (2) an individual chance constraint corresponding to i-th row $\left(1 \leq i \leq m_{2}\right)$ can be formulated as:

$$
\begin{equation*}
\mathrm{P}\left\{g_{2}^{i} \leq A_{21}^{i} \boldsymbol{x}_{\mathbf{1}}+A_{22}^{i} \boldsymbol{x}_{\mathbf{2}} \leq h_{2}^{i}\right\} \geq \alpha, \tag{8}
\end{equation*}
$$

where $0<\alpha<1$ is a reliability level, g_{2}^{i} and h_{2}^{i}, denote i-th elements of vectors $\boldsymbol{g}_{\mathbf{2}}$ and $\boldsymbol{h}_{\mathbf{2}}$; A_{21}^{i} and A_{22}^{i} denote i-th rows of matrices A_{21} and A_{22}.

The chance constraint constraint (8) has the following deterministic equivalent form:

$$
\begin{array}{ll}
g_{2 s}^{i} \leq A_{21 s}^{i} \boldsymbol{x}_{\mathbf{1}}+A_{22 s}^{i} \boldsymbol{x}_{2 s}+M v_{s} & (s=1, \ldots, S) \\
& A_{21 s}^{i} \boldsymbol{x}_{\mathbf{1}}+A_{22 s}^{i} \boldsymbol{x}_{2 s}-M w_{s} \leq h_{2 s}^{i} \\
v_{s} \leq z_{s} & (s=1, \ldots, S) \\
w_{s} \leq z_{s} & (s=1, \ldots, S) \\
\sum_{s=1}^{S} p_{s} z_{s} \leq 1-\alpha, &
\end{array}
$$

where M is a suitably chosen large constant, v_{s}, w_{s} and z_{s} are additional binary variables.
Similarly, below is the formulation of an individual ICC if g_{2}^{i} is infinite for all realisations of random parameters:

$$
\begin{equation*}
\mathrm{E}\left[\left(h_{2}^{i}-A_{21}^{i} \boldsymbol{x}_{\mathbf{1}}-A_{22}^{i} \boldsymbol{x}_{\mathbf{2}}\right)^{-}\right] \leq \beta, \tag{9}
\end{equation*}
$$

where $\beta \geq 0$ and $(a)^{-}:=\max \{-a, 0\}$ is a negative part of $a \in \mathbb{R}$.

The ICC (9) has the following deterministic equivalent form:

$$
\begin{aligned}
& A_{21 s}^{i} \boldsymbol{x}_{\boldsymbol{1}}+A_{22 s}^{i} \boldsymbol{x}_{2 s}-w_{s} \leq h_{2 s}^{i} \quad(s=1, \ldots, S) \\
& \sum_{s=1}^{S} p_{s} w_{s} \leq \beta
\end{aligned}
$$

where w_{s} are additional variables. Note that in the case of integrated chance constraints introduced variables are continuous which makes deterministic equivalents of ICCs computationally more tractable than those of chance constraints.

If h_{2}^{i} is infinite for all realisations of random parameters the constraint will look like:

$$
\mathrm{E}\left[\left(A_{21}^{i} \boldsymbol{x}_{\mathbf{1}}+A_{22}^{i} \boldsymbol{x}_{\boldsymbol{2}}-g_{2}^{i}\right)^{-}\right] \leq \beta,
$$

The case of both g_{2}^{i} and h_{2}^{i} finite results in a special case of a joint ICC and is not currently supported.

3 Data Provision in SMPS

3.1 SMPS Input Format

Whereas MPSX defines the format for LP data input, Stochastic MPS (SMPS) defines the input format for stochastic programming problems. FortSP implements the most important provisions of SMPS which is described by Birge et al. (1987). Since the solver is initially designed for use within the SPInE system its stochastic input fulfils the requirements of models generated by SPInE, and other provisions of SMPS are not supported in full. SPInE generates solver stochastic data in the form of discrete scenarios, and FortSP supports this form and also discrete blocks form and discrete independent form.

Three input files are required in order to specify a stochastic problem:

- Core file which is the fundamental problem template in the form of an LP problem using the MPSX format
- Time file specifying which rows and columns of the core-file belong to which time stage
- Stoch file specifying the alternative values taken by each random parameter value in the core file

The user may specify precise names for the input files or may give the basename - or 'Generic' name - of these files so that extensions are appended automatically. Denoting a base name by <problem> the resulting filenames are:
<problem>. cor for core file
<problem>.tim for time file
<problem>.sto for stoch file

3.2 Core File and Random Parameter Values

The core file expresses a linear programming problem or linear mixed integer problem in the format known as MPSX, familiar to the users of LP solvers and described in the manuals of many of such system, for example, FortMP (Ellison et al., 2008). In this format the file is divided into ROWS, COLUMNS, RHS, RANGES and BOUNDS sections, and data records have a fixed format as follows:

Field 1. Positions 2-3 (code)
Field 2. Positions 5-12 (1st name field)
Field 3. Positions 15-26 (2nd name field)
Field 4. Positions 30-37 (1st numeric field)
Field 5. Positions 40-47 (3rd name field)
Field 6. Positions 50-61 (2nd numeric field)
This layout is also used for data in the time and stoch files described below.
In the stochastic model a number of scalars will have uncertain values - they are denoted here as random parameter values. They may be anywhere in the core file other than in the ROWS section. Each random parameter value must have a representative, finite value assigned to it in the core problem, and this value must be recognisable by the input. It may not be
zero in the COLUMNS or the RANGES section, or left as infinite in the BOUNDS section. However it does not have to be a value corresponding to any particular scenario.

If the time file is in implicit format then both constraints and variables must be grouped according to the stage at which they apply. These separate groups are to be in the order of time stage in the core file (constraints in the ROWS section and variables in the COLUMNS section). As a result of this ordering the constraint matrix should have a lower block triangular form, with blocks for each stage.

MIP in the form of binary or integer descriptions may be applied to any decision variable (SOS and semi-continuous are not supported). However if it applies to variables other than the first here-and-now stage then the HN model must be solved using deterministic equivalent method - Benders' decomposition would not be suitable.

3.3 Time File

The time file in implicit format specifies the first member of each stage grouping in the constraints and variables of the core problem (hence the need to group these items by stage). The first line is as follows:

> Positions 1-4 Keyword TIME

Field 3 (15-22) Problem name
This is followed by the period header line as follows:
Positions 1-7 Keyword PERIODS
Field 3 (15-22) Keyword IMPLICIT (optional)
After this one line is included for each stage as follows:
Field 2 (5-12) Starting variable name
Field 3 (15-22) Starting constraint name
Field 5 (40-47) Stage name
Time stages are indexed $1,2, \ldots$ with stage number 1 being the first, here-and-now stage.
Finally the data ends with the following line:
Positions 1-6 Keyword Endata
The following is an example:

```
TIME EXAMPLE
PERIODS IMPLICIT
    C1 R1 STAGE1
    C6 R3 STAGE2
    C8 R19 STAGE3
ENDATA
```

Note that in place of R1 it is possible to use the objective row name. The objective row is moved by the input into the first row position, wherever it is found in the data.

3.4 Stoch File

All random data and the discrete distributions are specified in the stoch file. The first line is as follows:

Positions 1-5 Keyword STOCH
Field 3 (15-22) Problem name
This is followed by a header line that specifies the form of data input as follows:
Positions 1 onwards Keyword defining the data form as one of INDEP BLOCKS SCENARIOS
CHANCE ICC
Field 3 (15-22) Keyword DISCRETE
After this header line there are data-lines as described below and the file is terminated as before:

Positions 1-6 Keyword Endata
Sample values for random parameter values are presented in the stoch file in the same form as they appear in the core file, that is:

	Random parameter value in section:			
Field	COLUMNS	RHS	RANGES	BOUNDS
1: 2-3				Bound type
2: 5-12	Column name	Vector name	Vector name	Vector name
3: 15-22	Row name	Row name	Row name	Column name
4: 25-36	Sample value	Sample value	Sample value	Sample value
5: 40-47	2nd row name	2nd row name	2nd row name	
6:50-61	Sample value	Sample value	Sample value	

Fields 5 and 6 have a different use for INDEP-form data (see below), and otherwise can only be used for random parameter values with the same description in fields 1 and 2.

Stochastic Data Form INDEP

INDEP is used when each separate random parameter value has an independent distribution. Scenarios are built by selecting one possibility for each random parameter value, the set of all scenarios is then formed by taking all combinations of possible selections.

Each INDEP data line can describe only one random parameter value as follows:

Fields 1-4 As described above
Field 5 (40-47) Stage name
Field 6 (50-61) Probability value of the sample (must sum to 1 for each random parameter value)

Sequence should be according to time stage, and with separate samples of the same random parameter value collected into consecutive lines. The following is an example:

STOCH	EXAMPLE			
INDEP	DISCRETE			
C6	OBJ	2.5	STAGE2	0.5
C6	OBJ	3.0	STAGE2	0.5
C6	R3	5.0	STAGE2	0.33
C6	R3	5.5	STAGE2	0.67
C8	R19	1.0	STAGE3	0.25
C8	R19	2.0	STAGE3	0.25
C8	R19	3.0	STAGE3	0.5
ENDATA				

The above example has $12(2 \times 2 \times 3)$ scenarios, illustrated in the following table:

Base						
Scen	Scen	Stage	Value of			
	$(\mathrm{C} 6$, OBJ $)$	$(\mathrm{C} 6, \mathrm{R} 3)$	$(\mathrm{C} 8, \mathrm{R} 19)$	Probability		
1	core	2	2.5	5.0	1.0	0.04125
2	1	3	-	-	2.0	0.04125
3	1	3	-	-	3.0	0.08250
4	1	2	-	5.5	1.0	0.08375
5	4	3	-	-	2.0	0.08375
6	4	3	-	-	3.0	0.16750
7	1	2	3.0	5.0	1.0	0.04125
8	7	3	-	-	2.0	0.04125
9	7	3	-	-	3.0	0.08250
10	7	2	-	5.5	1.0	0.08375
11	10	3	-	-	2.0	0.08375
12	10	3	-	-	3.0	0.16750

Here the Base Scen column is the scenario containing the default values for any unstated random parameter values. The first scenario is always based on the core problem and specifies values for all random parameter values. The Stage column states the stage at which a difference appears from the base.

Stochastic Data Form BLOCKS

The nature of this form is very similar to INDEP, except that individual independent random parameter values give place to independent blocks (or sets) of random parameter values. The stage number and probability distribution become properties of the block rather than the individual random parameter value. Each new block and each new set of block values is introduced with a header line as follows:

Field 1 (2-3) Keyword BL
Field 2 (5-12) Block name
Field 3 (15-22) \quad Stage name
Field 4 (25-36) Probability value of the sample (must sum to 1 over the samples of each block)

Blocks with the same name should be grouped together.
Values for the members of each block are entered in a way similar to INDEP data, except that fields 5 and 6 , not being required for stage and probability, may contain a second data entry for fields 3 and 4 as tabled above in the general stoch file description.

The following is an example:

STOCH	EXAMPLE			
BLOCKS	DISCRETE			
BL BLOCK1	STAGE2	0.5	R3	5.0
C6	OBJ	2.5		
BL BLOCK1	STAGE2	0.5	5.5	
C6	OBJ	3.0		
BL BLOCK2	STAGE3	0.25		
C8	R19	1.0		
RHS	R19	100.0		
BL BLOCK2	STAGE3	0.25		
C8	R19	2.0		
RHS	R19	200.0		
BL BLOCK2	STAGE3	0.5		
C8	R19	3.0		
ENDATA				

This example gives rise to scenarios in the same manner as before, illustrated as follows:

Scen	Base Scen	Stage	Value of		Probability
			$\begin{aligned} & (\mathrm{C} 6, \mathrm{OBJ}) \\ & (\mathrm{C} 6, \mathrm{R} 3) \end{aligned}$	$\begin{aligned} & (\mathrm{C} 8, \mathrm{R} 19) \\ & (\mathrm{RHS}, \mathrm{R} 19) \end{aligned}$	
1	Core	2	2.5	1.0	0.125
			5.0	100.0	
2	1	3	-	2.0	0.125
				200.0	
3	2	3	-	3.0	0.250
4	1	2	3.0	1.0	0.125
			5.5	100.0	
5	4	3	-	2.0	0.125
				200.0	
6	5	3	-	3.0	0.250
				-	

Note that block samples do not have to restate values in the block if they duplicate the previous sample. Hence the base for samples other than the first of a block is the previous sample. So in the above example scenarios 3 and 6 assign value 200.0 to (RHS,R19).

Stochastic Data Form SCENARIOS

Scenarios have been introduced in the examples above. It may be observed that the branching of scenarios from each other (i.e. the base scenario connection) forms an event tree in which decisions may be taken at the nodes. The tree for the INDEP example above looks as follows:

In this diagram each scenario is represented by a full path through the nodes from left to right.

Scenario-form data is prepared from such a tree, which should be known directly or implicitly. For each scenario it is only necessary to enter the information that differs from its base scenario - that is the earlier scenario from which it branches. Where several branches issue from one node (to the right) the later scenarios may be considered as branching from any earlier scenario in that bundle. Thus for example:

Scenario 10 could branch from 1, 4 or 7
Scenario 6 could branch from 4 or 5
Scenario 1 must always branch from the core problem (and provide values for all the random parameter values).

Each scenario is preceded in the stoch file by a scenario header line as follows:

Field 1 (2-3) Keyword SC
Field 2 (5-12) \quad Scenario name
Field 3 (15-22) Should contain ROOT for scenario 1. For other scenarios enter the name of the base scenario
Field 4 (25-36) Probability value of the scenario (must sum to 1 over all scenarios)
Field 5 (40-47) Stage index with optional prefix

Data lines for scenarios follow the layout tabled in the general stoch file description.
Here is how the BLOCKS example can be presented in SCENARIOS form:

STOCH	EXAMPLE			
SCENARIOS	DISCRETE			
SC SCEN1	ROOT	0.125	STAGE1	
C6	OBJ	2.5	R3	5.0
C8	R19	1.0		
RHS	R19	100.0		
SC SCEN2	SCEN1	0.125	STAGE3	
C8	R19	2.0		
RHS	R19	200.0		
SC SCEN3	SCEN2	0.250	STAGE3	
C8	R19	3.0		
SC SCEN4	SCEN1	0.125	STAGE2	
C6	OBJ	3.0	R3	5.5
C8	R19	1.0		
RHS	R19	100.0		
SC SCEN5	SCEN4	0.125	STAGE3	
C8	R19	2.0		
RHS	R19	200.0		
SC SCEN6	SCEN5	0.250	STAGE3	
C8	R19	3.0		
ENDATA				

3.5 CHANCE and ICC Sections

Data for chance constraints and ICC are presented on the STOCH file in additional sections preceding the random data.

CHANCE Section

Chance constraints can be represented in the stoch file using the CHANCE section where the reliability parameters α are supplied (see section 2.4). The constraints themselves are defined in the core file and the distributions of their stochastic elements are defined in extra sections of the stoch file.

After a section header consisting of a single keyword CHANCE in position 1 each line describes a single chance constraint and has the following structure:

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field $2(5-12) \quad$ Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Reliability parameter α, see section 2.4

Example:

```
CHANCE
\begin{tabular}{llll} 
G & CC1 & R1 & 0.95 \\
L & CC1 & R2 & 0.10
\end{tabular}
```

The CHANCE section allows one or more groups of chance constraints to be defined. In the above example, the name of the group is CC1. FortSP uses the first group and ignores all others.

ICC Section

The ICC section is very similar to the CHANCE section. It starts with the keyword ICC followed by the lines in the form described below:

Field 1 (2-3) L or G denoting constraint sense as in the ROWS section
Field $2(5-12) \quad$ Name of a group of constraint
Field 3 (15-22) Row name
Field 4 (25-36) Parameter β for ICC, see section 2.4

Example:

```
ICC
    L ICC1 R8 10.0
```

The ICC section allows one or more groups of ICCs to be defined. In the above example, the name of the group is ICC1. FortSP uses the first group and ignores all others.

3.6 Objective Sense

SMPS doesn't provide a way to specify the objective sense. This can be done with the following option instead.

```
CLI Name --smps-obj-sense
SAMPL Name smps_obj_sense
Description The sense of optimisation for SMPS problems
Value minimize or maximize
Default minimize
```


4 Data Provision in SAMPL

The input format used in the AMPLDev modelling system is Stochastic AMPL, or SAMPL, which is described in details in SAMPL/SPInE User Manual (Valente et al., 2008). SAMPL is an extension of the AMPL modelling language for stochastic programming. It has many advantages over the legacy SMPS format and therefore it is recommended to use SAMPL for creating new models. The SAMPL translator fully supports FortSP and can export problem instances to SMPS for compatibility with other solvers.

4.1 SAMPL Input Format

Current version of the SAMPL translator accepts only two-stage SP problems expressed in a subset of the language. The syntax can be inferred from the example in Section 4.7. Details of modelling with SAMPL can be found elsewhere (Valente et al., 2008), this section only describes the scripting features that can be used to control FortSP and present the results.

4.2 The solve Statement

The solve statement instantiates the current problem and solves it.

Syntax

```
solve-stmt:
```

 solve ;

4.3 The print Statement

The print statement evaluates each expression in the list and prints the result to the standard output.

Syntax

```
print-stmt:
```

 print [indexing :] expr-list ;
 expr-list:
expr
expr-list, expr

Example: print $\{\mathrm{p}$ in Products\}: sell[p];

4.4 The write Statement

The write statement writes the current problem in the SMPS form.

Syntax

```
write-stmt:
    write sfilename;
```

Example: write sout;

4.5 The model and data Statements

The model and data statements have two forms. The one without arguments switches the current mode. For example the statement data; enters the data mode. The second form which takes a filename argument translates the specified file.

Syntax

model-stmt:

model [filename] ;
data-stmt:
data [filename] ;

4.6 The option Statement

The option statement sets and/or prints the option values.

Syntax

option-stmt:

option fortsp_options option-list ;

```
option-list:
    option
    option-list, option
```

option:
name [expr]

Here name is an option name and expr is an optional expression of compatible type. If the expression is not specified the option value is printed. Otherwise the expression is evaluated and the result is assigned to the option. Example: option solver cplex, lp_alg dual;

4.7 Example

As an example let's consider the farmer's problem from Introduction to Stochastic Programming (Birge and Louveaux, 1997).

A European farmer has 500 acres of land where he plans to grow wheat, corn, and sugar beets. He wants to decide how much land to devote to each crop in order to maximize profit and produce enough grain to feed his cattle. The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are needed for cattle feed. All that remains after satisfying the feeding requirements is sold. Selling and purchase prices as well as planting costs are given in the following table.

	Wheat	Corn	Sugar Beets
Planting cost $(\$ /$ acre $)$	150	230	260
Selling price $(\$ / \mathrm{T})$	170	150	36 under 6000 T
			10 above 6000 T
Purchase price $(\$ / \mathrm{T})$	238	210	-
Min. requirement (T)	200	240	-

Note that sugar beet has two selling prices because the European Commission imposes a quota on its production. Any amount above the quota is sold at a lower price.

The uncertainty in the problem comes from the weather conditions that affect yields. In this problem three possible scenarios are considered. The yields in tons per acre are given below for each crop and scenario.

	Wheat	Corn	Sugar Beets
Above	2.0	2.4	16.0
Average	2.5	3.0	200.0
Below	3.0	6.0	24.0

Here is a SAMPL formulation of the model:

```
set Crops;
scenarioset Scenarios;
probability P{Scenarios};
tree Tree := twostage;
param TotalArea; # acre
random param Yield{Crops, Scenarios}; # T/acre
param PlantingCost{Crops}; # $/acre
param SellingPrice{Crops}; # $/T
param ExcessSellingPrice; # $/T
param PurchasePrice{Crops}; # $/T
param MinRequirement{Crops}; # T
param BeetsQuota; # T
# Area in acres devoted to crop c
var area{c in Crops} >= 0;
# Tons of crop c sold (at favourable price in case of beets)
# under scenario s
var sell{c in Crops, s in Scenarios} >= 0, suffix stage 2;
# Tons of sugar beets sold in excess of the quota under
# scenario s
```

```
var sellExcess{s in Scenarios} >= 0, suffix stage 2;
# Tons of crop c bought under scenario s
var buy{c in Crops, s in Scenarios} >= 0, suffix stage 2;
maximize profit: sum{s in Scenarios} P[s] * (
    ExcessSellingPrice * sellExcess[s] +
    sum{c in Crops} (SellingPrice[c] * sell[c, s] -
    PurchasePrice[c] * buy[c, s]) -
    sum{c in Crops} PlantingCost[c] * area[c]);
s.t. totalArea: sum {c in Crops} area[c] <= TotalArea;
s.t. requirement{c in Crops, s in Scenarios}:
    Yield[c, s] * area[c] - sell[c, s] + buy[c, s]
        >= MinRequirement[c];
s.t. quota{s in Scenarios}: sell['beets', s] <= BeetsQuota;
s.t. beetsBalance{s in Scenarios}:
    sell['beets', s] + sellExcess[s]
        <= Yield['beets', s] * area['beets'];
```

The data for the farmer's problem are as follows:

```
data;
set Crops := wheat corn beets;
set Scenarios := below average above;
param TotalArea := 500;
param P :=
    below 0.333333
    average 0.333333
    above 0.333333;
param Yield:
            below average above :=
    wheat 2.0 2.5 3.0
    corn 2.4 3.0 3.6
    beets 16.0 20.0 24.0;
param PlantingCost :=
    wheat }15
    corn 230
    beets 260;
```

```
param SellingPrice :=
    wheat 170
    corn 150
    beets 36;
param ExcessSellingPrice := 10;
param PurchasePrice :=
    wheat 238
    corn 210
    beets 100; # Set to a high value to simplify the objective
param MinRequirement :=
    wheat 200
    corn 240
    beets 0;
param BeetsQuota := 6000;
```

Finally the script file needs to be provided which loads model and data files, solves the problem and retrieves the optimal value and solution. Due to the flexibility of the AMPL language SAMPL is based on, it is possible to combine model, data and script in one file which can be convenient in some cases. However, in general it is not recommended since it makes more difficult to use the same model with different data sets.

Let's assume that the model and data are stored in the files farmer.mod and farmer.dat. The following script loads these files, solves the problem and prints the results:

```
# Read the model and data.
model farmer.mod;
data farmer.dat;
# Set options.
option solver fortsp;
# Instantiate and solve the problem.
solve;
# Print the results.
print 'Optimal value =', profit;
print;
print 'First-stage solution:';
print {c in Crops}: 'area[', c, '] =', area[c], '\
';
print 'totalArea =', totalArea.body;
```

Running sampl with the command sampl <script filename> will produce the following
output:

```
optimal solution; objective 108390.00000000003
Optimal value = 108390.00000000003
First-stage solution:
area[ wheat ] = 170.00000000000003
area[ corn ] = 79.99999999999997
area[ beets ] = 250.00000000000003
totalArea = 500
```


5 Stochastic Programming Solution Methods (Continuous)

5.1 Deterministic Equivalent

The simplest solution approach is to formulate a deterministic equivalent of the SP problem and use a linear programming (LP) solver to optimise it. FortSP fully supports automatic formulation of deterministic equivalent problems either with implicit or with explicit nonanticipativity. This method is feasible and sometimes advantageous especially if the number of scenarios is relatively small. A more detailed explanation of the Deterministic Equivalent can be found on appendix B, section B.1.

FortSP can also formulate deterministic equivalents of two-stage problems with individual chance constraints and integrated chance constraints.

5.2 Cutting Plane (Benders)

The following decomposition algorithms are available in FortSP for solving the Here-and-Now (HN) problem:

- Benders' decomposition - L-shaped method
- Level decomposition variant
- Nested Benders' decomposition

The first two methods are applicable for two-stage problems and the last allows solving multi-stage problems. These algorithms take advantage of a specific structure of stochastic programming problems and make it possible to solve problems with large number of scenarios. The level decomposition applies a regularisation that is particularly effective for larger numbers of scenarios. For the interested reader, section B. 2 on appendix B presents a more detailed mathematical background on decomposition methods.

In addition to finding here-and-now values for decision variables in the first stage the system may extend this to recourse values for the various scenarios in future stages.

For integrated chance constraints an efficient cutting-plane algorithm (Klein Haneveld and Vlerk, 2002) is provided.

In the stochastic Bender's decomposition and its variants, a variable θ is used as an appropriate approximation of the second stage value function. In certain cases the addition of optimality cuts (refer to Birge and Louveaux (1997)) creates an unbounded situation as θ is a free variable. As an ad-hoc fix for this a large negative lower bound is applied to θ, which is retained until no longer needed. If not large enough then the algorithm may halt prematurely with a cycling status. It may then be possible to obtain the correct solution by specifying a lower bound for θ with the --theta-lower option.

5.3 Generic L-Shaped Method

Consider the two-stage stochastic programming problem

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x}+\mathrm{E}[Q(\boldsymbol{x}, \omega)] \\
\text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b}, \tag{10}\\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}},
\end{array}
$$

where $Q(\boldsymbol{x}, \omega)$ is the value function of the recourse problem

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{q}(\omega)^{T} \boldsymbol{y} \\
\text { subject to } & T(\omega) \boldsymbol{x}+W(\omega) \boldsymbol{y} \geq \boldsymbol{h}(\omega), \tag{11}\\
& \boldsymbol{y} \in \mathbb{R}_{+}^{n_{2}}
\end{array}
$$

Assume that the vector of random coefficients has finite discrete distribution with S realisations (scenarios) $\omega_{1}, \omega_{2}, \ldots \omega_{S}$ and probability $P\left(\omega_{i}\right)=p_{i}, i=1,2, \ldots, S$.

Let $Q(x)$ denote the objective in (10):

$$
Q(x)=\boldsymbol{c}^{T} \boldsymbol{x}+\mathrm{E}[Q(\boldsymbol{x}, \omega)]
$$

This section describes a generic L-shaped algorithm that is used to implement various specific L-shaped based methods such as regularised decomposition. The extensibility is achieved by allowing to redefine certain procedures. The following algorithms were implemented based on this generic framework:

- The L-shaped method
- The multicut L-shaped algorithm
- L-shaped algorithm with regularisation by the level method
- Trust region method based on l_{∞} norm
- Regularised decomposition

5.3.1 Scenario clustering

Consider the multicut version of the L-shaped method where scenarios are divided into C clusters of sizes $S_{1}, S_{2}, \ldots, S_{C}$. The master problem at iteration k is

$$
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{T} \boldsymbol{x}+\sum_{j=1}^{C} \theta_{j} \\
\text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b}, \tag{12}\\
& D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k}, \\
& F_{j}^{k} \boldsymbol{x}+\theta_{j} \boldsymbol{e} \geq \boldsymbol{f}_{j}^{k}, \quad j=1,2, \ldots, C, \\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}}, \boldsymbol{\theta} \in \mathbb{R}^{C},
\end{array}
$$

where $D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k}$ are feasibility cuts, $F_{j}^{k} \boldsymbol{x}+\theta_{j} \boldsymbol{e} \geq \boldsymbol{f}_{j}^{k}$ are optimality cuts and $\boldsymbol{e}=(1,1, \ldots, 1)$. Algorithm 2 divides scenarios into clusters of approximately the same size. It takes an input parameter $r \in[0,1]$ which denotes the cluster size relative to the number of scenarios.

```
Algorithm 1 Generic L-shaped method
    choose iteration limit \(k_{\max } \in \mathbb{Z}_{+}\)
    choose relative stopping tolerance \(\epsilon \in \mathbb{R}_{+}\)
    solve the expected value problem to get a solution \(\boldsymbol{x}^{0}\) (initial iterate)
    \(k \leftarrow 0, Q^{*} \leftarrow \infty\)
    initialise()
    while time limit is not reached and \(k<k_{\max }\) do
        solve the recourse problems (11) with \(\boldsymbol{x}=\boldsymbol{x}^{k}\) and compute \(Q\left(\boldsymbol{x}^{k}\right)\)
        if all recourse problems are feasible then
            add \(C\) optimality cuts
            if \(Q\left(\boldsymbol{x}^{k}\right)<Q^{*}\) then
            \(Q^{*} \leftarrow Q\left(\boldsymbol{x}^{k}\right)\)
            \(\boldsymbol{x}^{*} \leftarrow \boldsymbol{x}^{k}\)
            end if
        else
            add a feasibility cut
        end if
        get-next-iterate()
        \(k \leftarrow k+1\)
    end while
```

Here initialise and get-next-iterate are procedures to be defined by specific methods.

```
Algorithm 2 Scenario clustering
    \(s \leftarrow 0, i \leftarrow 1\)
    while \(s<S\) do
        \(S_{i} \leftarrow\left\lceil i \max \left(\frac{S}{\lceil 1 / r-0.5\rceil}, 1\right)-s-0.5\right\rceil\)
        \(s \leftarrow s+S_{i}\)
        \(i \leftarrow i+1\)
    end while
```


5.4 The L-shaped method

When the relative cluster size $r=1$, which is the default, there is only one cluster of size S resulting in the original L-shaped method of Van Slyke and Wets (1969). $r=0$ results in the multicut version (Birge and Louveaux, 1988) with each cluster consisting of a single scenario. Intermediate values are also possible, for example if $S=7$ and $r=\frac{1}{3}$, then scenarios will be divided into 3 clusters of sizes 2,3 and 2 .

To get the classic L-shaped method the initialise and get-next-iterate procedures are defined as shown in Algorithms 3 and 4 respectively. The second check of optimality condition in Algorithm 4 ensures that the recouse problems are not solved unnecessarily when the optimality gap became acceptable due to increase in the lower bound.

```
Algorithm 3 initialise (original L-shaped)
    \(Q^{0} \leftarrow-\infty\)
```

```
Algorithm 4 get-next-iterate (original L-shaped)
    if \(\left(Q^{*}-Q^{k}\right) /\left(\left|Q^{*}\right|+10^{-10}\right) \leq \epsilon\) then
        stop
    end if
    solve the master problem (12) to get an optimal solution \(\left(\boldsymbol{x}^{k+1}, \boldsymbol{\theta}^{k+1}\right)\) and the optimal
    objective value \(Q^{k+1} ; \boldsymbol{x}^{k+1}\) is the next iterate
    if \(\left(Q^{*}-Q^{k+1}\right) /\left(\left|Q^{*}\right|+10^{-10}\right) \leq \epsilon\) then
        stop
    end if
```


5.5 Regularisations

In the following subsections we briefly discuss variations of the L-Shaped method.

5.5.1 L-shaped method with regularisation by the level method

Regularisation by the level method (Lemaréchal et al., 1995; Fábián and Szőke, 2007) is achieved by defining the initialise and get-next-iterate procedures according to Algorithms 5 and 6. For more details see appendix section B. 5

```
Algorithm 5 initialise (level regularisation)
    choose \(\lambda \in(0,1)\)
    \(Q^{0} \leftarrow-\infty\)
```


5.5.2 Trust region method based on the infinity norm

Algorithms 7 and 8 show definitions of the procedures for the l_{∞} trust region method (Linderoth and Wright, 2003). See section B. 6 for more details.

5.5.3 Regularised decomposition

Algorithms 9 and 10 show definitions of the procedures for the regularised decomposition method with dynamic adaptation of σ as described by Ruszczyński and Świȩtanowski (1997). This method is explained is section B. 4

```
Algorithm 6 get-next-iterate (level regularisation)
    if \(\left(Q^{*}-Q^{k}\right) /\left(\left|Q^{*}\right|+10^{-10}\right) \leq \epsilon\) then
        stop
    end if
    solve the master problem (12) to get an optimal solution ( \(\boldsymbol{x}^{\prime}, \boldsymbol{\theta}^{\prime}\) ) and the optimal objective
    value \(Q^{k+1}\).
    if \(\left(Q^{*}-Q^{k+1}\right) /\left(\left|Q^{*}\right|+10^{-10}\right) \leq \epsilon\) then
        stop
    end if
    solve the projection problem:
\[
\begin{array}{ll}
\text { minimize } & \left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|^{2} \\
\text { subject to } & \boldsymbol{c}^{T} \boldsymbol{x}+\sum_{j=1}^{C} \theta_{j} \leq(1-\lambda) Q^{k+1}+\lambda Q^{*} \\
& A \boldsymbol{x} \geq \boldsymbol{b},  \tag{13}\\
& D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k}, \\
& F_{j}^{k} \boldsymbol{x}+\theta_{j} \boldsymbol{e} \geq \boldsymbol{f}_{j}^{k}, \quad j=1,2, \ldots, C, \\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}}, \boldsymbol{\theta} \in \mathbb{R}^{C},
\end{array}
\]
```

let $\left(\boldsymbol{x}^{k+1}, \boldsymbol{\theta}^{k+1}\right)$ be an optimal solution of the projection problem; then \boldsymbol{x}^{k+1} is the next iterate

```
Algorithm 7 initialise (trust region method)
    choose \(\xi \in(0,1 / 2)\) and maximum trust region radius \(\Delta_{h i} \in[1, \infty)\)
    choose initial radius \(\Delta \in\left[1, \Delta_{h i}\right]\)
    counter \(\leftarrow 0\)
    \(\hat{Q} \leftarrow \infty\)
```

```
Algorithm 8 get-next-iterate (trust region method)
    if \(\hat{Q}<\infty\) then
        if \(\hat{Q}-Q\left(\boldsymbol{x}^{k}\right) \geq \xi\left(\hat{Q}-Q^{k}\right)\) then
            if \(\hat{Q}-Q\left(\boldsymbol{x}^{k}\right) \geq 0.5\left(\hat{Q}-Q^{k}\right)\) and \(\left\|\boldsymbol{x}^{\boldsymbol{k}}-\hat{\boldsymbol{x}}\right\|_{\infty}=\Delta\) then
                    increase the radius:
                    \(\Delta \leftarrow \min \left(2 \Delta, \Delta_{h i}\right)\)
            end if
            set a reference point:
            \(\hat{\boldsymbol{x}} \leftarrow \boldsymbol{x}^{k}\)
            \(\hat{Q} \leftarrow Q(\hat{\boldsymbol{x}})\)
            counter \(\leftarrow 0\)
        else
            \(\rho \leftarrow-\min (1, \Delta)\left(\hat{Q}-Q\left(\boldsymbol{x}^{k}\right)\right) /\left(\hat{Q}-Q^{k}\right)\)
            if \(\rho>0\) then
                    counter \(\leftarrow\) counter +1
            end if
            if \(\rho>3\) or (counter \(\geq 3\) and \(\rho \in(1,3])\) then
                decrease the radius:
                    \(\Delta \leftarrow \Delta / \min (\rho, 4)\)
                counter \(\leftarrow 0\)
            end if
        end if
    else
        set a new reference point:
        \(\hat{\boldsymbol{x}} \leftarrow \boldsymbol{x}^{k}\)
        \(\hat{Q} \leftarrow Q(\hat{\boldsymbol{x}})\)
    end if
    solve the master problem with additional trust region bounds:
\[
\begin{array}{ll}
\text { minimize } & \boldsymbol{c}^{T} \boldsymbol{x}+\sum_{j=1}^{C} \theta_{j} \\
\text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b}, \\
& D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k},  \tag{14}\\
& F_{j}^{k} \boldsymbol{x}+\theta_{j} \boldsymbol{e} \geq \boldsymbol{f}_{j}^{k}, \quad j=1,2, \ldots, C, \\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}}, \boldsymbol{\theta} \in \mathbb{R}^{C}, \\
& \hat{\boldsymbol{x}}-\Delta \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}}+\Delta .
\end{array}
\]
```

let $\left(\boldsymbol{x}^{k+1}, \boldsymbol{\theta}^{k+1}\right)$ be an optimal solution of the problem (14) and Q^{k+1} be its optimal value if $\left|\hat{Q}-Q^{k+1}\right| /\left(|\hat{Q}|+10^{-10}\right) \leq \epsilon$ then
stop
end if

```
Algorithm 9 initialise (regularised decomposition)
    \(\hat{\boldsymbol{x}} \leftarrow \boldsymbol{x}^{0}\)
    \(Q^{0} \leftarrow \infty\)
    choose \(\sigma\) and \(\gamma\)
```

```
Algorithm 10 get-next-iterate (regularised decomposition)
    if \(k=0\) or \(\left|Q\left(x^{k}\right)-Q^{k}\right| /\left(\left|Q\left(x^{k}\right)\right|+10^{-10}\right)\) then
        set a new reference point:
        \(\hat{\boldsymbol{x}} \leftarrow \boldsymbol{x}^{k}\)
        \(\hat{Q} \leftarrow Q(\hat{\boldsymbol{x}})\)
    end if
    if \(Q\left(\boldsymbol{x}^{k}\right)<\infty\) then
        if \(Q\left(\boldsymbol{x}^{k}\right)>\gamma \hat{Q}+(1-\gamma) Q^{k}\) then
            \(\sigma \leftarrow \sigma / 2\)
        else if \(Q\left(\boldsymbol{x}^{k}\right)<(1-\gamma) \hat{Q}+\gamma Q^{k}\) then
            \(\sigma \leftarrow 2 \sigma\)
        end if
    end if
```

solve the master problem with an additional quadratic term in the objective:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x}+\sum_{j=1}^{C} \theta_{j}+\frac{1}{2 \sigma}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2} \\
\text { subject to } & A \boldsymbol{x} \geq \boldsymbol{b}, \tag{15}\\
& D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k}, \\
& F_{j}^{k} \boldsymbol{x}+\theta_{j} \boldsymbol{e} \geq \boldsymbol{f}_{j}^{k}, \quad j=1,2, \ldots, C, \\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}}, \boldsymbol{\theta} \in \mathbb{R}^{C},
\end{array}
$$

let $\left(\boldsymbol{x}^{k+1}, \boldsymbol{\theta}^{k+1}\right)$ be an optimal solution of the problem (15) and $Q^{k+1}=\boldsymbol{c}^{T} \boldsymbol{x}^{k+1}+\sum_{j=1}^{C} \theta_{j}^{k+1}$
if $\left|\hat{Q}-Q^{k+1}\right| /\left(|\hat{Q}|+10^{-10}\right) \leq \epsilon$ then stop
end if
delete constraints that have corresponding dual variables zero in the solution of (15), keeping the last C added constraints intact

5.6 Remarks

Preliminary experiments showed that keeping all the cuts in regularised decomposition, while resulting in smaller number of iterations, increases overall solution time due to master problem becoming much more difficult to solve. At the same time the trust region method based on l_{∞} norm is exposed to this issue to a less extent and therefore no cut deletion was done.

The default relative stopping tolerance $\epsilon=10^{-5}$ is used for the L-shaped method with and without regularisation by the level method. The stopping criteria in trust region algorithm and regularised decomposition are different because these methods do not provide global lower bound. Therefore ϵ is set to a lower value of 10^{-6} for them.

Default values for other parameters are listed below.

- L-shaped algorithm with regularisation by the level method:
$\lambda=0.5$,
- Trust region method based on l_{∞} norm:
$\Delta=1, \Delta_{h i}=10^{3}, \xi=10^{-4}$,
- Regularised decomposition:
$\sigma=1, \gamma=0.9$.

6 Stochastic Integer Programming Solution Methods

6.1 Deterministic Equivalent

The simplest solution approach is to formulate a deterministic equivalent of the SIP problem and use a Integer Programming (IP) solver to optimise it via a generic Branch-and-Bound algorithm. FortSP fully supports automatic formulation of deterministic equivalent problems either with implicit or with explicit non-anticipativity. This method is feasible and sometimes advantageous especially if the number of scenarios is relatively small.

FortSP can also formulate deterministic equivalents of two-stage problems with individual chance constraints and integrated chance constraints.

6.2 Integer L-Shaped Method

The Integer L-shaped method is an algorithm for solving two-stage SIP problems with complete recourse, which is similar to the continuous L-Shaped method for stochastic linear programming. The method operates on the current problem based on the first-stage subproblem with added feasibility and optimality cuts. The current problem at iteration k can be defined as follows:

$$
\begin{array}{ll}
\operatorname{minimize} & \boldsymbol{c}^{T} \boldsymbol{x}+\theta \\
\text { subject to } & A \boldsymbol{x}=\boldsymbol{b}, \\
& D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k} \tag{16}\\
& E^{k} \boldsymbol{x}+\theta \geq \boldsymbol{e}^{k} \\
& \boldsymbol{x} \in \mathbb{R}_{+}^{n_{1}}, \boldsymbol{\theta} \in \mathbb{R},
\end{array}
$$

where $D^{k} \boldsymbol{x} \geq \boldsymbol{d}^{k}$ are the feasibility cuts and $E^{k} \boldsymbol{x}+\theta \geq \boldsymbol{e}^{k}$ are the optimality cuts. The main difference of this algorithm from its continuous counterpart is branching on the first-stage binary variables which results in a branch and cut procedure. As in the continuous L-shaped method, the second-stage subproblems are solved only during the evaluation of the expected recourse function when computing the optimality cuts. In this way both decomposition of stages and decomposition of scenarios are achieved.

The integer L-shaped method is applicable to a wide range of SIP problems with binary first stage, continuous second stage and complete fixed recourse. A restricted class of problems with discrete second-stage variables is supported. The flowchart in Figure 4 outlines the Integer L-Shaped method.

6.3 VNDS Heuristic

Variable Neighbourhood Decomposition Search (VNDS) is a two-level variant of the variable neighbourhood search heuristic, based upon the decomposition of the problem. Introducing neighbourhood structures into the solution space of a SIP makes the application of VNDS possible as a solution method for the first stage problem. The heuristic result can be used to speed up the overall solution process for a given two-stage SIP problem.

By fixing a portion of variables in the first-stage problem of a given two-stage SIP problem, an easier problem is obtained, which can usually be solved faster than the original problem. Ideally, if all the variables from the first-stage problem are fixed, then only solving the

Figure 4: Flowchart of the integer L-shaped method within a branch and cut framework
second-stage problems of a specific block-structure remains. By systematically changing the number of variables to be fixed, a VNDS scheme for two-stage SIP problem is obtained. The general pseudo-code of the VNDS heuristic for the two-stage SIP problem is given in Algorithm 11. Input parameters for the algorithm are an input two-stage SIP problem P and initial integer feasible solution \boldsymbol{x}^{*}.

```
Algorithm 11 VNDS for two-stage SIP
    Given: SIP problem instance \(P\), integer feasible solution \(\boldsymbol{x}^{*}\),
    stopping tolerance \(\varepsilon\)
    \(L \leftarrow-\infty, \quad U \leftarrow f\left(\boldsymbol{x}^{*}\right)\)
    while time limit is not reached do
        Solve the LP relaxation of \(P\) to obtain the solution \(\overline{\boldsymbol{x}}\)
        \(L \leftarrow f(\overline{\boldsymbol{x}})\)
        if \(\overline{\boldsymbol{x}} \in\{0,1\}^{r_{1}} \times \mathbb{R}_{+}^{n_{1}-r_{1}}\) then
            \(\boldsymbol{x}^{*} \leftarrow \overline{\boldsymbol{x}}, \quad U \leftarrow L\)
            stop
        end if
        \(\Delta_{j}=\left|x_{j}^{*}-\bar{x}_{j}\right|, \quad j=1, \ldots, r_{1}\)
        Index \(x_{j}\) so that \(\Delta_{j} \leq \Delta_{j+1}, \quad j=1, \ldots, r_{1}-1\)
        \(k \leftarrow r_{1}\)
        while time limit is not reached and \(k \geq 0\) do
            \(J_{k} \leftarrow\{1, \ldots, k\}\)
            Add constraint \(\Delta\left(J_{k}, \boldsymbol{x}^{*}, \boldsymbol{x}\right)=0\) to \(P\)
            Solve the problem \(P\) to obtain the solution \(\boldsymbol{x}^{\prime}\)
            if optimal solution found or problem is infeasible then
                    Replace the last added constraint with \(\Delta\left(J_{k}, \boldsymbol{x}^{*}, \boldsymbol{x}\right) \geq 1\)
        else
            Delete the last added constraint
        end if
        if \(f\left(\boldsymbol{x}^{\prime}\right)<f\left(\boldsymbol{x}^{*}\right)\) then
            \(\boldsymbol{x}^{*} \leftarrow \boldsymbol{x}^{\prime}, \quad U \leftarrow f\left(\boldsymbol{x}^{\prime}\right)\)
            if \(|U-L| \leq \varepsilon|U|\) then
                stop
            end if
        end if
        \(k \leftarrow k-1\)
        end while
    end while
```


7 Computing Stochastic Measures

7.1 Ancillary Algorithms - EV and WS

The system may also evaluate the following special problems:

- Expected value (EV) problem, which assumes that all data will take their expected values.
- Wait-and-see (WS) problem, which is obtained by solving a separate sub-problem for each scenario assuming that all random data is already known. The final WS solution is the probability-weighted average of these solutions for each scenario.

Each special problem can be evaluated in addition to the main HN problem. When the calculation of stochastic measures are required, the EV and/or the WS problems will be solved as needed, whether or not a corresponding option has been set. See section 7.2 below.

7.2 Stochastic Measures - EVPI and VSS

The expected value of perfect information (EVPI) is computed as the difference between the optimal values of the wait-and-see (WS) and the here-and-now (HN) problems. Therefore the EVPI option implies the solution of both the HN and WS problems.

In order to calculate the value of the stochastic solution (VSS), we need to know the expectation of the expected value solution (EEV). EEV is calculated by solving the EV problem, fixing the obtained solution in the WS sub-problems, and computing the probability weighted objective value. Hence the VSS option implies the solution of all three classes of problems, HN, EV and WS, whether or not it is specified in the corresponding option.

7.3 Algorithm Controls and Options

Options for SP algorithms are as follows:

CLI Name	-- solve-hn
SAMPL Name	solve_hn
Description	Flag specifying whether to solve the here-and-now problem
Value	0 or 1
Default	1
CLI Name	-- solve-ev
SAMPL Name	solve_ev
Description	Flag specifying whether to solve the expected value problem
Value	0 or 1
Default	0
CLI Name	-- solve-ws
SAMPL Name	solve_ws
Description	Flag specifying whether to solve the wait-and-see problem
Value	0 or 1
Default	0

CLI Name	--compute-evpi
SAMPL Name	compute_evpi
Description	Flag specifying whether to compute the expected value of perfect information (EVPI)
	The expected value of perfect information requires the solution of both HN and WS models. Setting this option to 1 implies both --solver-hn and --solve-ws to be set. EVPI is the absolute difference between the HN and WS solution objectives.
Value	0 or 1
Default	0
CLI Name	--compute-vss
SAMPL Name	compute_vss
Description	Flag specifying whether to compute the value of the stochastic solution $(\mathrm{VSS})^{2}$
Value	0 or 1
Default	0
CLI Name	--vss-fstage
SAMPL Name	vss_fstage
Description	Flag specifying whether to fix only the first stage when computing the value of the stochastic solution ${ }^{2}$
Value	0 or 1
Default	0

The default algorithm - auto - chosen by the system - is Benders' decomposition for two-stage recourse problems and deterministic equivalent with implicit nonanticipativity for other problems. An exception to this is single-stage ICC problems, which by default are solved with the special cutting plane algorithm. All other CC and ICC problems are solved only with deterministic equivalent.
Default auto

CLI Name	--time-limit
SAMPL Name	time_limit
Description	Time limit in seconds
Value	Nonnegative number
Default	3600

Options for Benders' decomposition:

CLI Name	--ben-pp-expval
SAMPL Name	ben_pp_expval
Description	Flag specifying whether to obtain the initial first stage solution by solving the EV problem
Value	0 or 1
Default	1

[^1]| CLI Name | --ben-fffb |
| :---: | :---: |
| SAMPL Name | ben_fffb |
| Description | Flag specifying whether to use fast forward, fast back method for multi-stage |
| Value | 0 or 1 |
| Default | 0 |
| CLI Name | --ben-theta-lower |
| SAMPL Name | ben_theta_lower |
| Description | Lower bound for θ used when necessary to avoid unbounded situations. |
| | In certain cases the addition of optimality cuts creates an unbounded situation as θ is a free variable. As an ad-hoc fix for this, a large negative lower bound is applied to θ, which is retained until no longer needed. If not large enough then the Benders algorithm may halt prematurely with a cycling status. It may then be possible to obtain a correct solution by specifying a lower value for this option, for example - 1000000 . |
| Value | Number |
| Default | -100000 |
| CLI Name | --ben-cut-factor |
| SAMPL Name | ben_cut_factor |
| Description | Maximum cuts per child scenario |
| Value | Integer |
| Default | 20 |
| CLI Name | --ben-max-iter |
| SAMPL Name | ben_max_iter |
| Description | Iteration limit for Benders' decomposition |
| Value | Nonnegative integer |
| Default | 10000 |

Figure 5: FortSP algorithms and solvers

8 External Solvers

8.1 Solvers Available

FortSP has a powerful plug-in system that allows to connect it to third-party LP, QP and MIP solvers. Plugin-in is a dynamic library (DLL on Windows, shared object on Unix) that provides an implementation of the plug-in interface. Currently FortSP is connected to the following solvers: CPLEX, FortMP and Gurobi. The external solver can be selected using the --solver option which takes on the solver name (lowercase) as a value, for example, --solver=gurobi.

Figure 5 illustrates which combinations of algorithms and plug-ins are supported in FortSP. Compatible modules are connected by arcs so, for instance, it is possible to solve deterministic equivalent problems with any solver and LP algorithm.

8.2 Solver Options and Controls

Options for LP or QP solver execution are as follows:

CLI Name	-- solver
SAMPL Name	solver
Description	External solver name
Value	String
Default	fortmp (windows) or cplex (linux/mac)

CLI Name	--lp-alg
SAMPL Name	lp_alg
Description	This option specifies which LP algorithm should be used to solve a deterministic equivalent problem and all linear programming subproblems that are constructed in the course of solving the SP problem.
Value	The possible values for this option are listed in the table below.
	Name Description
	auto The algorithm is chosen automatically (default)
	primal Primal simplex method
	dual Dual simplex method
	ipm Interior point method
Default	auto
CLI Name	--basis-restart
SAMPL Name	basis_restart
Description	Flag specifying whether to use warm start
Value	0 or 1
Default	1

CLI Name SAMPL Name Description	--use-fortmp-specs use_fortmp_specs Flag specifying whether to use extra SPECS-command file (only with the FortMP solver.)
	A SPECS command file with the name fortmp.spc may be used to refine the options when FortMP is the solver in use. See the FortMP manual (Ellison et al., 2008). Commands are to be provided in sec- tions corresponding to the type of sub-problem that is being solved, according to the following table:

9 Solution File and Logging

Solution file gives the model-type solutions that are requested with status and values for both primal and dual solutions. This is limited by default to values for the first stage only, extendable to further stages by option.

Diagnostics of any unusual events or errors occurring is reported to the console. The log file gives solver messages that are normally not of interest to the user and therefore logging is disabled by default.

9.1 Output Controls and Options

Options for solution output and logging are as follows:

CLI Name	--sol-file
SAMPL Name	
Description	sol_file Actual name of the solution file. If the filename is empty solution output is disabled.
Value Default	String

CLI Name	--ben-log-print
SAMPL Name	ben_log_print
Description	Code for items to be logged (Benders multi-stage only)
	Additional logged output can be generated with the option --ben-log-print. This should be used with caution as the log-file can easily be swamped. Certain values of use are:
	- 3 - for solution status of each node (plus the default)
	- 19 - for details of the node tree (plus the above)
	- 95 - for description of every cut applied (plus the above)
	with option 3 the output volume may be reduced by specifying --ben-log-freq - that is the interval to leave between node solutionstatus logs.
Value	Integer
Default	1
CLI Name	--ben-log-freq
SAMPL Name	ben_log_freq
Description	Logged every this number of passes (Benders multi-stage only)
Value	Integer
Default	1

9.2 Solution Format for Second Stage

By default, information is included for the first stage solution. If the user explicitly selects the corresponding option, information for the second stage will be appended (if available) at the end of the solution file. Second stage solution will be in an AMPL solution format for suffixes as follows:

```
suffix <kind> <n> <namelen> <tablen> <tablines>
<sufname>
<index 1> <value 1>
<index 2> <value 2>
<index n> <value n>
```

Field kind is the type of data being represented (0 - primal variable suffix, 1 - dual variable suffix), n is the number of values (for example, number of second stage variables), namelen is a length of the suffix name (the sufname string) +1 , tablen and tablines are irrelevant and will be equal to zero. These values are maintained for AMPL compatibility purposes. Field index i is a zero-based index of an item (primal or dual variable), value i is the value associated with an item at index i.

Both scenario indices and types of values are enconded in suffix names (represented by sufname). For example, primal variables suffix names are enconded in the form $v<$ scenario $i>$,
where v stands for value scenario i is a zero-based scenario index. Similarly for constraints (dual variables) suffix names can be of the form $d<$ scenario $i>$ with d standing for dual.

References

Ariyawansa, K. A. and Felt, A. J. (2004). On a new collection of stochastic linear programming test problems. INFORMS Journal on Computing, 16(3):291-299.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4:238-252. Re-publised in Computational Management Science 2 (2005), 3-19.

Birge, J. R., Dempster, M. A. H., Gassmann, H. I., Gunn, E. A., King, A. J., and Wallace, S. W. (1987). A standard input format for multiperiod stochastic linear programs. COAL Newsletter, 17:1-19.

Birge, J. R. and Louveaux, F. V. (1988). A multicut algorithm for two-stage stochastic linear programs. European Journal of Operational Research, 34:384-392.

Birge, J. R. and Louveaux, F. V. (1997). Introduction to Stochastic Programming. SpringerVerlag, New York.

Colombo, M. and Gondzio, J. (2008). Further development of multiple centrality correctors for interior point methods. Computational Optimization and Applications, 41:277-305.

Dantzig, G. B. and Madansky, A. (1961). On the solution of two-stage linear programs under uncertainty. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 165-176. University of California Press, Berkeley.

Dantzig, G. B. and Wolfe, P. (1960). The decomposition principle for linear programs. Operations Research, 8:101-111.

Dolan, E. D. and Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2):201-213.

Ellison, E. F. D., Hajian, M., Jones, H., Levkovitz, R., Maros, I., Mitra, G., and Sayers, D. (2008). FortMP Manual. Brunel University: London, Numerical Algorithms Group: Oxford. http://www.optirisk-systems.com/manuals/FortmpManual.pdf.

Fábián, C. I. (2000). Bundle-type methods for inexact data. Central European Journal of Operations Research, 8:35-55. Special issue, T. Csendes and T. Rapcsák, eds.

Fábián, C. I. and Szőke, Z. (2007). Solving two-stage stochastic programming problems with level decomposition. Computational Management Science, 4:313-353.

Gassmann, H. (1990). MSLiP: a computer code for the multistage stochastic linear programming problem. Mathematical Programming, 47:407-423.

Gondzio, J. (1995). Hopdm (version 2.12) a fast lp solver based on a primal-dual interior point method. European Journal of Operational Research, 85:221-225.

Holmes, D. (1995). A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS). http: //users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html.

Kall, P. and Mayer, J. (1998). On testing SLP codes with SLP-IOR. In New Trends in Mathematical Programming: Homage to Steven Vajda, pages 115-135. Kluwer Academic Publishers.

Kiwiel, K. C. (1985). Methods of descent for nondifferentiable optimization. Springer-Verlag, Berlin, New York.

Klein Haneveld, W. K. and Vlerk, M. H. (2002). Integrated chance constraints: reduced forms and an algorithm. Technical report, University of Groningen, Research Institute SOM (Systems, Organisations and Management).

König, D., Suhl, L., and Koberstein, A. (2007). Optimierung des Gasbezugs im liberalisierten Gasmarkt unter Berücksichtigung von Röhren- und Untertagespeichern. In Sammelband zur VDI Tagung "Optimierung in der Energiewirtschaft" in Leverkusen.

Lemaréchal, C. (1978). Nonsmooth optimization and descent methods. Research Report 78-4, IIASA, Laxenburg, Austria.

Lemaréchal, C., Nemirovskii, A., and Nesterov, Y. (1995). New variants of bundle methods. Mathematical Programming, 69:111-147.

Linderoth, J. and Wright, S. (2003). Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications, 24:207-250.

Nemirovski, A. (2005). Lectures in modern convex optimization. ISYE, Georgia Institute of Technology.

Oliveira, W., Sagastizábal, C., and Scheimberg, S. (2011). Inexact bundle methods for two-stage stochastic programming. SIAM Journal on Optimization, 21:517-544.

Rockafellar, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14:877-898.

Ruszczyński, A. (1986). A regularized decomposition method for minimizing a sum of polyhedral functions. Mathematical Programming, 35:309-333.

Ruszczyński, A. (2003). Decomposition methods. In Ruszczyński, A. and Shapiro, A., editors, Stochastic Programming, Handbooks in Operations Research and Management Science, volume 10, pages 141-211. Elsevier, Amsterdam.

Ruszczyński, A. (2006). Nonlinear Optimization. Princeton University Press.
Ruszczyński, A. and Świȩtanowski, A. (1997). Accelerating the regularized decomposition method for two-stage stochastic linear problems. European Journal of Operational Research, 101:328-342.

Valente, C., Mitra, G., Sadki, M., and Fourer, R. (2009). Extending algebraic modelling languages for stochastic programming. Informs Journal on Computing, 21(1):107-122.

Valente, P., Mitra, G., Poojari, C., Ellison, E. F., Di Domenica, N., Mendi, M., and Valente, C. (2008). SAMPL/SPInE User Manual. OptiRisk Systems. http://www. optirisk-systems.com/manuals/SpineAmplManual.pdf.

Van Slyke, R. and Wets, R. J. B. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM Journal on Applied Mathematics, 17:638-663.

Zverovich, V., Fábián, C. I., Ellison, F., and Mitra, G. (2012). A computational study of a solver system for processing two-stage stochastic lps with enhanced benders decomposition. Mathematical Programming Computation, 4(3):211-238.

APPENDICES

A Option Summary

The following is a complete list of options.

SMPS Input Options

CLI Name	--smps-obj-sense
SAMPL Name	smps_obj_sense
Description	The sense of optimisation for SMPS problems
Value	minimize or maximize
Default	minimize

Algorithm Options

CLI Name	-- solve-hn
SAMPL Name	solve_hn
Description	Flag specifying whether to solve the here-and-now problem
Value	0 or 1
Default	1
CLI Name	-- solve-ev
SAMPL Name	solve_ev
Description	Flag specifying whether to solve the expected value problem
Value	0 or 1
Default	0
CLI Name	-- solve-ws
SAMPL Name	solve_ws
Description	Flag specifying whether to solve the wait-and-see problem
Value	0 or 1
Default	0
CLI Name	-- compute-evpi
SAMPL Name	compute_evpi
Description	Flag specifying whether to compute the expected value of perfect
	information (EVPI)
	The expected value of perfect information requires the solution of
	both HN and WS models. Setting this option to 1 implies both
	-- solver-hn and --solve-ws to be set. EVPI is the absolute differ-
ence between the HN and WS solution objectives.	
Value	0 or 1
Default	0

CLI Name	--compute-vss
SAMPL Name	compute_vss
Description	Flag specifying whether to compute the value of the stochastic solution (VSS) ${ }^{3}$
Value	0 or 1
Default	0
CLI Name	--vss-fstage
SAMPL Name	vss_fstage
Description	Flag specifying whether to fix only the first stage when computing the value of the stochastic solution ${ }^{3}$
Value	0 or 1
Default	0
CLI Name	--sp-alg
SAMPL Name	sp_alg
Description	Stochastic programming algorithm to be used
Value	The possible values for this option are listed in the table below.
	Name Description
	auto The algorithm is chosen automatically (default)
	deteq The deterministic equivalent problem with implicit non-anticipativity is constructed and solved
	The deterministic equivalent problem with explicit non-anticipativity constraints is constructed and solved
	benders Benders' decomposition
	level Variant of level decomposition
	trustregion The trust region method by Linderoth and Wright (2003)
	rd Regularised decomposition

The default algorithm - auto - chosen by the system - is Benders' decomposition for two-stage recourse problems and deterministic equivalent with implicit nonanticipativity for other problems. An exception to this is single-stage ICC problems, which by default are solved with the special cutting plane algorithm. All other CC and ICC problems are solved only with deterministic equivalent.

Default	auto
CLI Name	--time-limit
SAMPL Name	time_limit
Description	Time limit in seconds
Value	Nonnegative number
Default	3600

[^2]
Options for Benders' Decomposition

CLI Name	--ben-pp-expval
SAMPL Name	ben_pp_expval
Description	Flag specifying whether to obtain the initial first stage solution by
	solving the EV problem
Value	0 or 1
Default	1
CLI Name	--ben-fffb
SAMPL Name	ben_fffb
Description	Flag specifying whether to use fast forward, fast back method for
	multi-stage
Value	0 or 1
Default	0
CLI Name	--ben-theta-lower
SAMPL Name	ben_theta_lower
Description	Lower bound for θ used when necessary to avoid unbounded situa-
	tions.
	In certain cases the addition of optimality cuts creates an unbounded
	situation as θ is a free variable. As an ad-hoc fix for this, a large
	negative lower bound is applied to θ, which is retained until no longer
	needed. If not large enough then the Benders algorithm may halt
	prematurely with a cycling status. It may then be possible to obtain a
	correct solution by specifying a lower value for this option, for example
	-1000000.
Value	Number
Default	-100000

[^3]
Solver Options

CLI Name	--solver
SAMPL Name	solver
Description	External solver name
Value	String
Default	fortmp (windows) or cplex (linux/mac)
CLI Name	--lp-alg
SAMPL Name	lp_alg
Description	This option specifies which LP algorithm should be used to solve a deterministic equivalent problem and all linear programming subproblems that are constructed in the course of solving the SP problem.
Value	The possible values for this option are listed in the table below.
	Name Description
	auto The algorithm is chosen automatically (default)
	primal Primal simplex method
	dual Dual simplex method
	ipm Interior point method
Default	auto
CLI Name	--basis-restart
SAMPL Name	basis_restart
Description	Flag specifying whether to use warm start
Value	0 or 1
Default	1

\(\left.$$
\begin{array}{ll}\begin{array}{l}\text { CLI Name } \\
\text { SAMPL Name } \\
\text { Description }\end{array} & \begin{array}{l}\text {--use-fortmp-specs } \\
\text { use_fortmp_specs }\end{array}
$$

Flag specifying whether to use extra SPECS-command file (only with

the FortMP solver.)\end{array}\right]\)| A SPECS command file with the name fortmp. spc may be used to |
| :--- |
| refine the options when FortMP is the solver in use. See the FortMP |
| manual (Ellison et al., 2008). Commands are to be provided in sec- |
| tions corresponding to the type of sub-problem that is being solved, |
| according to the following table: |

Output Options

CLI Name SAMPL Name	$\begin{aligned} & \text {--sol-file } \\ & \text { sol_file } \end{aligned}$
Description	Actual name of the solution file. If the filename is empty solution output is disabled.
Value	String
Default	
CLI Name	--sol-include-second-stage
SAMPL Name	sol_include_second_stage
Description	Include information for the 2nd stage solution if it is available. The information will be appended at the end of the solution file. Currently the option --sol-format must be set to 'ampl' for the information to be written in the output file.
Value	0 or 1
Default	0
CLI Name	--log-file
SAMPL Name	log_file
Description	Actual name of the log file. If the filename is empty logging is disabled.
Value	String
Default	
CLI Name	--ben-log-print
SAMPL Name	ben_log_print
Description	Code for items to be logged (Benders multi-stage only)
	Additional logged output can be generated with the option --ben-log-print. This should be used with caution as the log-file can easily be swamped. Certain values of use are:
	- 3 - for solution status of each node (plus the default)
	- 19 - for details of the node tree (plus the above)
	- 95 - for description of every cut applied (plus the above)
	with option 3 the output volume may be reduced by specifying --ben-log-freq - that is the interval to leave between node solutionstatus logs.
Value	Integer
Default	1
CLI Name	--ben-log-freq
SAMPL Name	ben_log_freq
Description	Logged every this number of passes (Benders multi-stage only)
Value	Integer
Default	1

B Solution Methods for Two-Stage Stochastic Programming Problems

In this appendix we only consider linear SP models and assume that the random parameters have a discrete finite distribution. This class is based on two key concepts: (i) a finite set of discrete scenarios (of model parameters) and (ii) a partition of variables to first stage ("here and now") decision variables and a second stage observation of the parameter realisations and corrective actions and the corresponding recourse (decision) variables.

B. 1 Deterministic Equivalent

The first stage decisions are represented by the vector \boldsymbol{x}. Assume there are S possible outcomes (scenarios) of the random event, the i th outcome occurring with probability p_{i}. Suppose the first stage decision has been made with the result \boldsymbol{x}, and the i th scenario is realised. The second stage decision \boldsymbol{y} is computed by solving the following second-stage problem or recourse problem

$$
\begin{array}{rrl}
R_{i}(x): & \min & \boldsymbol{q}_{i}^{\boldsymbol{T}} \boldsymbol{y} \\
\text { subject to } & T_{i} \boldsymbol{x}+W_{i} \boldsymbol{y}=\boldsymbol{h}_{\boldsymbol{i}} \tag{17}\\
& \boldsymbol{y} \geq 0,
\end{array}
$$

where $\boldsymbol{q}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{i}}$ are given vectors and T_{i}, W_{i} are given matrices. Let K_{i} denote the set of those x vectors for which the recourse problem $R_{i}(x)$ has a feasible solution. This is a convex polyhedron. For $x \in K_{i}$, let $q_{i}(x)$ denote the optimal objective value of the recourse problem. We assume that $q_{i}(x)>-\infty$ (or equivalently, we assume that the dual of the recourse problem $R_{i}(x)$ has a feasible solution, solvability of the dual problem does not depend on x). The function $q_{i}: K_{i} \rightarrow \mathbb{R}$ is a polyhedral (i.e., piecewise linear) convex function.

The customary formulation of the first-stage problem is stated as:

$$
\begin{align*}
\min & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}+\sum_{i=1}^{S} p_{i} q_{i}(\boldsymbol{x}) \\
\text { subject to } & \boldsymbol{x} \in X, \tag{18}\\
& \boldsymbol{x} \in K_{i},(i=1, \ldots, S),
\end{align*}
$$

where $X:=\boldsymbol{x} \mid A \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq 0$ is a non-empty bounded polyhedron describing the constraints, \boldsymbol{c} and \boldsymbol{b} are given vectors and A is a given matrix, with compatible sizes. The expectation part of the objective, $F(x):=\sum_{i=1}^{S} p_{i} q_{i}(x)$, is called the expected recourse function. This is a polyhedral convex function with the domain $K:=K_{1} \cap \ldots \cap K_{S}$.

This two-stage stochastic programming problem ((18) and (17)) can be formulated as a single linear programming problem called the deterministic equivalent problem:

$$
\begin{array}{rllll}
\min & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}+p_{1} \boldsymbol{q}_{1}^{\boldsymbol{T}} \boldsymbol{y}_{1}+ & \ldots & +p_{S} \boldsymbol{q}_{S}^{\boldsymbol{T}} \boldsymbol{y}_{S} & \\
\text { subject to } & A \boldsymbol{x} & & & =\boldsymbol{b}, \\
& T_{1} \boldsymbol{x}+W_{1} \boldsymbol{y}_{1} & & & =\boldsymbol{h}_{1} \tag{19}\\
& \vdots & \ddots & & \vdots \\
& T_{S} \boldsymbol{x}+ & & W_{S} \boldsymbol{y}_{S} & =\boldsymbol{h}_{S} \\
& \boldsymbol{x} \geq 0, \boldsymbol{y}_{1} \geq 0, \ldots, \boldsymbol{y}_{S} \geq 0 &
\end{array}
$$

B. 2 Decomposition Methods

The deterministic equivalent problem (19) is a linear programming problem of a specific structure: for each scenario, a subproblem is included that describes the second-stage decision associated with the corresponding scenario realisation. The subproblems are linked by the first-stage decision variables. Dantzig and Madansky (1961) observed that the dual of the deterministic equivalent problem fits the prototype for the Dantzig-Wolfe decomposition (Dantzig and Wolfe (1960)).

Van Slyke and Wets (1969) proposed a cutting-plane approach for the first-stage problem (18). Their L-Shaped method builds respective cutting-plane models of the feasible domain $K=K_{1} \cap \ldots \cap K_{S}$ and of the expected recourse function $F=\sum_{i=1}^{S} p_{i} q_{i}$. We outline cuttingplane models and their relationship with decomposition. Let us denote the dual of $R_{i}(x)$ in (17) as

$$
\begin{array}{rll}
D_{i}(x): & \max & \boldsymbol{z}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \\
& \text { subject to } & W_{i}^{T} \boldsymbol{z} \leq \boldsymbol{q}_{\boldsymbol{i}}, \tag{20}
\end{array}
$$

where \boldsymbol{z} is a real-valued vector.
The feasible region is a convex polyhedron that we assumed nonempty. We will characterise this polyhedron by two finite sets of vectors: let U_{i} and V_{i} denote the sets of the extremal points and of the extremal rays, respectively, in case the polyhedron can be represented by these sets. To handle the general case, we require further formalism; let us add a slack vector $\boldsymbol{\gamma}$ of appropriate dimension, and use the notation $\left[W_{i}^{T}, I\right](\boldsymbol{z}, \boldsymbol{\gamma})=W_{i}^{T} \boldsymbol{z}+\boldsymbol{\gamma}$. Given a composite vector $(\boldsymbol{z}, \boldsymbol{\gamma})$ of appropriate dimensions, let support $(\boldsymbol{z}, \boldsymbol{\gamma})$ denote the set of those column-vectors of the composite matrix $\left[W_{i}^{T}, I\right]$ that belong to non-zero $(\boldsymbol{z}, \boldsymbol{\gamma})$-components. Using these, let
$U_{i}=\left\{\boldsymbol{z} \mid W_{i}^{T} \boldsymbol{z}+\boldsymbol{\gamma}=\boldsymbol{q}_{\boldsymbol{i}}, \boldsymbol{\gamma} \geq 0\right.$, support $(\boldsymbol{z}, \boldsymbol{\gamma})$ is a linearly independent set $\}$,
$V_{i}=\left\{\boldsymbol{z} \mid W_{i}^{T} \boldsymbol{z}+\boldsymbol{\gamma}=0, \boldsymbol{\gamma} \geq 0,\|(\boldsymbol{z}, \boldsymbol{\gamma})\|=1\right.$ support (\boldsymbol{z}, γ) is a minimal dependent set $\}$,
where a minimal dependent set is a set that is not linearly independent; but is minimal in the sense that having discarded any of its elements, the remaining elements compose a linearly independent set.
U_{i} is the set of the basic feasible solutions of problem (20) and hence it is a finite set. Finiteness of V_{i} can be proven in a similar manner: Given a minimal dependent subset of the columns of the matrix $\left[W_{i}^{T}, I\right]$, there are no more than 2 vectors in V_{i} that have the given
subset as support. The feasible domain of the dual problem $D_{i}(x)$ in (20) can be represented as convex combinations of U_{i}-elements added to cone-combinations of V_{i}-elements.

We have $\boldsymbol{x} \in K_{i}$ if and only if the dual problem $D_{i}(x)$ has a finite optimum, that is,

$$
\boldsymbol{v}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq 0 \text { holds for every } \boldsymbol{v}_{\boldsymbol{i}} \in V_{i}
$$

In this case, the optimum of $D_{i}(x)$ is attained at an extremal point, and can be computed as

$$
\begin{array}{ll}
\min & \vartheta_{i} \\
\text { subject to } & \vartheta_{i} \in \mathbb{R} \\
& \boldsymbol{u}_{\boldsymbol{i}}^{T}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq \vartheta_{i} \quad\left(\boldsymbol{u}_{\boldsymbol{i}} \in U_{i}\right)
\end{array}
$$

By the linear programming duality theorem, the optimum of the above problem is equal to $q_{i}(x)$; hence the first-stage problem (18) is written as

$$
\begin{array}{ll}
\min & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}+\sum_{i=1}^{S} p_{i} \vartheta_{i} \\
\text { subject to } & \boldsymbol{x} \in X, \vartheta_{i} \in \mathbb{R} \quad(i=1, \ldots, S) \\
& \boldsymbol{v}_{i}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq 0 \quad\left(\boldsymbol{v}_{\boldsymbol{i}} \in V_{i}, i=1, \ldots, S\right) \tag{21}\\
& \boldsymbol{u}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq \vartheta_{i} \quad\left(\boldsymbol{u}_{\boldsymbol{i}} \in U_{i}, i=1, \ldots, S\right)
\end{array}
$$

This we call the disaggregated form. The aggregated form is stated as

$$
\begin{array}{ll}
\min & \boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}+\vartheta \\
\text { subject to } & \boldsymbol{x} \in X, \vartheta \in \mathbb{R} \\
& \boldsymbol{v}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq 0 \quad\left(\boldsymbol{v}_{\boldsymbol{i}} \in V_{i}, i=1, \ldots, S\right) \tag{22}\\
& \sum_{i=1}^{S} p_{i} \boldsymbol{u}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right) \leq \vartheta \quad\left(\left(\boldsymbol{u}_{\boldsymbol{i}}, \ldots, \boldsymbol{u}_{\boldsymbol{S}}\right) \in \mathcal{U}\right)
\end{array}
$$

where $\mathcal{U} \subset U_{1} \times \ldots \times U_{S}$ is a subset that contains an element for each facet in the graph of the polyhedral convex function F; formally, we have

$$
F(\boldsymbol{x})=\sum_{i=1}^{S}\left\{p_{i} \max _{\boldsymbol{u}_{\boldsymbol{i}} \in U_{i}} \boldsymbol{u}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right)\right\}=\max _{\left(\boldsymbol{u}_{\boldsymbol{1}}, \ldots, \boldsymbol{u}_{\boldsymbol{S}}\right) \in \mathcal{U}} \sum_{i=1}^{S} p_{i} \boldsymbol{u}_{\boldsymbol{i}}^{\boldsymbol{T}}\left(\boldsymbol{h}_{\boldsymbol{i}}-T_{i} \boldsymbol{x}\right)
$$

Cutting-plane methods can be devised on the basis of either the disaggregated formulation (21) or the aggregated formulation (22). These are processed by iterative methods that build respective cutting-plane models of the feasible set K and the expected recourse function F. Cuts at a given iterate \widehat{x} are generated by solving the dual problems $D_{i}(\widehat{x})(i=1, \ldots, S)$. Dual problems with unbounded objectives yield feasibility cuts that are used to construct a model of K. Dual problems with optimal solutions yield optimality cuts that are used to construct a model of F.

In its original form, the L-Shaped method of Van Slyke and Wets (1969) works on the aggregated problem. A multicut version that works on the disaggregated problem was proposed by Birge and Louveaux (1988).

There is a close relationship between decomposition and cutting-plane approaches. It turns out that the following approaches yield methods that are in principle identical:

- cutting-plane method for either the disaggregated problem (21) or the aggregated problem (21),
- DantzigWolfe decomposition (Dantzig and Wolfe (1960)) applied to the dual of the deterministic equivalent problem (19),
- Benders decomposition (Benders (1962)) applied to the deterministic equivalent problem (19).

Cutting-plane formulations have the advantage that they give a clear visual illustration of the procedure. A state-of-the-art overview of decomposition methods can be found in Ruszczyński (2003).

B.2.1 Aggregated versus disaggregated formulations

The difference between the aggregated and the disaggregated problem formulations may result in a substantial difference in the efficiency of the solution methods. By using disaggregated cuts, more detailed information is stored in the master problem, hence the number of the master iterations is reduced in general. This is done at the expense of larger master problems.

Birge and Louveaux (1997) conclude that the multicut approach is in general more effective when the number of the scenarios is not significantly larger than the number of the constraints in the first-stage problem. This conclusion is based on their own numerical results (Birge and Louveaux (1988)) and those of Gassmann (1990).

B. 3 Regularisation and trust region methods

It is observed that successive iterations do not generally produce an orderly progression of solutions - in the sense that while the change in objective value from one iteration to the next may be very small, even zero, a wide difference may exist between corresponding values of the first-stage variables. This feature of zigzagging in cutting plane methods is the consequence of using a linear approximation. Improved methods were developed that use quadratic approximation: proximal point method by Rockafellar (1976), and bundle methods by Kiwiel (1985) and Lemaréchal (1978). These methods construct a sequence of stability centers together with the sequence of the iterates. When computing the next iterate, roaming away from the current stability center is penalised.

Another approach is the trust region methods, where a trust region is constructed around the current stability center, and the next iterate is selected from this trust region.

B. 4 Regularised decomposition

The Regularised Decomposition (RD) method of Ruszczyński (1986) is a bundle-type method applied to the minimisation of the sum of polyhedral convex functions over a convex polyhedron, hence this method fits the disaggregated problem (19). The RD method lays an emphasis on keeping the master problem as small as possible. (This is achieved by an effective constraint reduction strategy.) A recent discussion of the RD method can be found in Ruszczyński (1986).

Ruszczyński and Świȩtanowski (1997) implemented the RD method, and solved two-stage stochastic programming problems, with a growing scenario set. Their test results show that the RD method is capable of handling large problems.

B. 5 Regularisation: The level method

A more recent development in convex programming is the level method of Lemaréchal et al. (1995). This is a special bundle-type method that uses level sets of the model functions for regularisation. Let us consider the problem

$$
\begin{array}{ll}
\min & f(\boldsymbol{x}) \tag{23}\\
\text { subject to } & \boldsymbol{x} \in Y
\end{array}
$$

where $Y \subset \mathbb{R}^{n}$ is a convex bounded polyhedron, and f a real-valued convex function, Lipschitzian relative to Y. The level method is an iterative method, a direct generalization of the classical cutting-plane method. A cutting-plane model of f is maintained using function values and subgradients computed at the known iterates. Let \underline{f} denote the current model function; this is the upper cover of the linear support functions drawn at the known iterates. Hence \underline{f} is a polyhedral convex lower approximation of f. The level sets of the model function are used for regularisation.

Let \hat{x} denote the current iterate. Let F^{*} denote the minimum of the objective values in the known iterates. Obviously F^{*} is an upper bound for the optimum of (23).

Let $\underline{F}:=\min _{\boldsymbol{x} \in Y} \underline{f}(\boldsymbol{x})$ denote the minimum of the current model function over the feasible polyhedron. Obviously \underline{F} is a lower bound for the optimum of (23).

If the gap $F^{*}-\underline{F}$ is small, then the algorithm stops. Otherwise let us consider the level set of the current model function belonging to the level $(1-\lambda) F^{*}+\lambda \underline{F}$ where $0<\lambda<1$ is a fixed parameter. Using formulas, the current level set is

$$
\hat{Y}=\left\{\boldsymbol{x} \in F \mid \underline{f}(\boldsymbol{x}) \leq(1-\lambda) F^{*}+\lambda \underline{F}\right\} .
$$

The next iterate is obtained by projecting the current iterate onto the current level set. Formally, the next iterate is an optimal solution of the convex quadratic programming problem $\min \|x-\hat{x}\|^{2}$ subject to $x \in \hat{Y}$.

Lemaréchal et al. (1995) give the following efficiency estimate: To obtain a gap smaller than ϵ, it suffices to perform

$$
\begin{equation*}
\kappa\left(\frac{D L}{\epsilon}\right)^{2} \tag{24}
\end{equation*}
$$

iterations, where D is the diameter of the feasible polyhedron, L is a Lipschitz constant of the objective function, and κ is a constant that depends only on the parameter of the algorithm.

Applying the level method to our first-stage problem (18), let $f(\boldsymbol{x}):=\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}+F(\boldsymbol{x})$ and $Y=X \bigcap K$. The feasible domain is not known explicitly (except for problems with relatively complete recourse). Hence, in general, we must construct a cutting-plane model of Y using feasibility cuts. The level method must be adapted accordingly: the objective value can only be computed for feasible iterates. We clearly obtain a finite procedure because the set of the possible cuts is finite. (We never discard cuts in our implementation. Though there are means of bundle reduction for the level method, we did not implement them because the level method solved our test problems in but a few iterations.)

Remark 1 In case of relatively complete recourse no feasibility cuts are needed, and the efficiency estimate (24) applies. This estimate is essentially different from the classic finiteness results obtained when a polyhedral convex function is minimised by a cutting-plane method. Finiteness results are based on enumeration. The straightforward finiteness proof assumes that basic solutions are found for the model problems, and that there is no degeneracy. (These assumptions facilitate bundle reduction.)

An interesting finiteness proof that allows for nonbasic solutions is presented in Ruszczyński (2006). This is based on the enumeration of the cells (i.e., polyhedrons, facets, edges, vertices) that the linear pieces of the objective function define.

Remark 2 In general, the constants L and D in (24) are not easily derived from the problem data. Upper bounds of the Lipschitz constant L are proposed in Fábián and Szőke (2007) for the case of special two-stage stochastic programming problems, e.g., those having network recourse (SP problems where the second-stage subproblems are network flow problems). But even with constants of reasonable magnitudes, the estimate (24) generally yields bounds too large for practical purposes.

However, the level method performs much better in practice than the estimate (24) implies. Nemirovski (2005) [chapter 5.3.2] observes the following experimental fact: when solving a problem with n variables, every n steps add a new accurate digit in our estimate of the optimum. This observation is confirmed by those experiments reported in Fábián and Szőke (2007), where the level method is applied for the solution of two-stage stochastic programming problems with relatively complete recourse. That paper also reports on solving the problems with growing scenario sets. According to the results presented, there is no relationship connecting the number of the scenarios and the number of the levelmaster iterations required (provided the number of the scenarios is large enough).

Remark 3 There are extensions of the level method that particularly fit in with a two-stage stochastic problem solver.

The constrained level method of Lemaréchal et al. (1995) is a primal-dual method that solves convex problems involving constraint functions. The first-stage problem (18) can be formulated using a constraint function instead of the set constraints $\boldsymbol{x} \in K_{i}(i=1, \ldots, S)$.

A measure of the second-stage infeasibility can be used as a constraint function; namely, the expectation of the infeasibility in the corresponding second-stage problems. Fábián and Szőke (2007) applied the constrained level method to this constraint function formulation of the first-stage problem. The advantage of this approach is that regularisation extends to feasibility issues. This approach requires extending the expected recourse function beyond K.

Fábián (2000) proposed inexact versions of the level method and the constrained level method. The inexact methods use approximate data to construct models of the objective and constraint functions. At the beginning of the procedure, a rough approximation is used, and the accuracy is gradually increased as the optimum is approached. Solving the first-stage problem with an inexact method facilitates a progressive approximation of the distribution. Moreover we can work with approximate solutions of the second stage problems. Numerical results of Fábián and Szőke (2007) show that this progressive approximation framework is effective: although the number of the master iterations is larger than in the case of the exact method, there is a substantial reduction in the solution time of the second-stage problems.

A different approach of using inexact bundle methods for two-stage stochastic programming problems is proposed by Oliveira et al. (2011).

Remark 4 The level method can also be implemented for problems with unbounded domain Y. A set of initial cuts is then needed to make the master objective bounded from below, just like with a pure cutting-plane method.

The constant D is never actually used in course of the level method; it is used only in the convergence proof and in the theoretical efficiency estimate (24). In case the objective function f is polyhedral, then finiteness of the procedure follows from the finiteness of the set of the possible cuts.

Remark 5 An interesting feature of the level method is that the parameter λ is fixed. This is in contrast with other bundle-type methods that need continual tuning of the parameters in course of operation.

B. 6 Regularisation: Trust-region

The box-constrained trust-region method of Linderoth and Wright (2003) solves the disaggregated problem (21), and uses a special trust-region approach.

Trust-region methods construct a sequence of stability centers together with the sequence of the iterates. Trust regions are constructed around the stability centers, and the next iterate is selected from the current trust region. Linderoth and Wright construct box-shaped trust regions, hence the resulting master problems remain linear. The size of the trust region is continually adapted on the basis of the quality of the current solution.

C Known Weaknesses

1. Execution time is heavily dependent on the total number of scenarios. If this is very large the deterministic equivalent solvers become impossible to use and Benders' solver may become too lengthy for the user's satisfaction.
2. A procedure to select a useful subset of scenarios by importance or by Monte-Carlo sampling has been programmed but is not yet tested to any extent.
3. The Benders' solver is designed for Markovian stochastic data in which the interaction between stages in the constraint matrix forms a stair pattern. This means that any one stage is constrained directly by the previous stage decisions only and not by decisions earlier than the previous stage. Two-stage problems are Markovian. Non-Markovian multi-stage problems should also be solvable with Benders, but, to our knowledge, no mathematical proof has been published.
4. In rare cases Benders' solver may be halted by a cycling status with the true optimum solution not yet reached (see description of the --ben-theta-lower option). Cycling may also result from attempt to solve a non-Markovian problem, or from degeneracy if a feasible solution is difficult to find.

D Examples of Use

The following is a simple example of a 4 -stage problem:
Core File (MYSP.cor)

NAME	MYSP			
ROWS				
N Z				
G R1				
G R2				
G R3				
L R4				
G R5				
G R6				
L R7				
G R8				
G R9				
L R10				
COLUMNS				
X1	Z	3.0	R1	1.0
X1	R2	1.0		
X 2	Z	2.0	R1	1.0
Y1	Z	-15.0	R2	-3.0
Y1	R3	1.0	R4	1.0
Y1	R5	2.0		
Y2	Z	-12.0	R5	-1.0
Y2	R6	1.0	R7	1.0
Y2	R8	3.0		
Y3	Z	-4.0	R8	-1.0
Y3	R9	1.0	R10	1.0
RHS				
RHS1	R3	3.2	R4	4.0
RHS1	R6	3.2	R7	7.0
RHS1	R9	1.0	R10	1.0
ENDATA				

Time File (MYSP.tim)

TIME	MYSP	
PERIODS		
X1	R1	STAGE001
Y1	R2	STAGE002
Y2	R5	STAGE003
Y3	R8	STAGE004
ENDATA		

Stoch File (MYSP.sto)

STOCH		MYSP		
SCENARIOS		DISCRETE		
SC	SCEN0001	'ROOT'	0.125	STAGE001
	RHS1	R3	3.2	
	RHS1	R4	4.0	
	RHS1	R6	3.2	
	RHS1	R7	7.0	
	RHS1	R9	4.0	
	RHS1	R10	8.0	
SC	SCEN0002	SCEN0001	0.125	STAGE004
	RHS1	R9	3.0	
	RHS1	R10	6.0	
SC	SCEN0003	SCEN0001	0.125	STAGE003
	RHS1	R6	4.8	
	RHS1	R7	9.0	
	RHS1	R9	9	
	RHS1	R10	12.0	
SC	SCEN0004	SCEN0003	0.125	STAGE004
	RHS1	R9	6.4	
	RHS1	R10	18.0	
SC	SCEN0005	SCEN0001	0.125	STAGE002
	RHS1	R3	1.2	
	RHS1	R4	4.0	
	RHS1	R6	2.2	
	RHS1	R7	7.5	
	RHS1	R9	3.0	
	RHS1	R10	6.0	
SC	SCEN0006	SCEN0005	0.125	STAGE004
	RHS1	R9	4.0	
	RHS1	R10	9.0	
SC	SCEN0007	SCEN0005	0.125	STAGE003
	RHS1	R6	2.8	
	RHS1	R7	6.0	
	RHS1	R9	5.2	
	RHS1	R10	12.0	
SC	SCEN0008	SCEN0007	0.125	STAGE004
	RHS1	R9	4.4	
	RHS1	R10	8.0	
ENDA	ATA			

Command

The following command causes all forms of output to be generated and the solution written to MYSP .sol:

```
fortsp --solve-ev --solve-ws --compute-evpi --compute-vss --sp-alg=benders \
    --ben-fffb --vss-fstage --solver=cplex --sol-file=MYSP.sol MYSP
```


Solution File (MYSP.sol)

Solution file generated from the run is as follows:

HN						
Obj -149						
Optimal LP solution						
Variables						
Name	Index	Stage	Value	Rscos	Lob	Upb
X1	0	1	12	0	0	inf
X2	1	1	0	2	0	inf
Constraints						
Name	Index	Stage	SPrice	RowAct	Lhs	Rhs
R1	0	1	-0	12	0	inf
END						
ExpVal						
Obj	-152					
Optimal LP solution						
Variables						
Name	Index	Stage	Value	Rscos	Lob	Upb
X1	0	1	12	0	0	inf
X2	1	1	0	2	0	inf
Constraints						
Name	Index	Stage	SPrice	RowAct	Lhs	Rhs
R1	0	1	-0	12	0	inf
END						
WS						
WS Scenario = 1						
Obj -140, Prob = 0.125						
Optimal LP solution						
Variables						
Name	Index	Stage	Value	Rscos	Lob	Upb
X1	0	1	12	0	0	inf
X2	1	1	0	2	0	inf
Constraints						
Name	Index	Stage	SPrice	RowAct	Lhs	Rhs
R1	0	1	-0	12	0	inf
END						

The solution shown above includes only 1st stage values and comprises:

- The WS solution for each scenario
- The WS summary result
- The EV solution
- The HN solution
- Values of the stochastic measures EVPI and VSS

The stochastic measures EVPI and VSS are both zero in this simple example since the values of EEV and WS are both equal to the HN objective. Note that if the option --vss-fix-fstage had been omitted, then the EEV would in fact have been infeasible and VSS would have been infinite. Theoretically $V S S=0$ is not correct but this value is probably more important to a user than $V S S=$ infinity.

Solver Output

```
IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic
Initiative" is accessing CPLEX 12 with option(s): "e m b q ".
Reading time = 0.000943 s.
Stage 1 has 1 rows, 2 columns, and 2 nonzeros.
Stage 2 has 3 rows, 1 columns, and 4 nonzeros.
Stage 3 has 3 rows, 1 columns, and 4 nonzeros.
Stage 4 has 3 rows, 1 columns, and 4 nonzeros.
Problem has 4 stages, 8 scenarios, and 62 random elements.
Solution time = 0.025982 s.
Tried aggregator 1 time.
LP Presolve eliminated }10\mathrm{ rows and 5 columns.
All rows and columns eliminated.
Presolve time = 0.00 sec.
Optimal solution found, objective = -149.
EVPI = 0
VSS = 0
```

Dimensions of the problems to be solved, run times and stochastic measures are reported. The output from the external solver (CPLEX) is suppressed for subproblems owing to the large volume that would be shown otherwise.

Solving the Deterministic Equivalent Problem

In the following command only the HN solution is requested (default), using the deterministic equivalent algorithm with implicit nonanticipativity. Data is the same as before.

```
fortsp --sp-alg=deteq --solver=cplex --sol-file=MYSP.sol MYSP
```


Solution File (MYSP.sol)

```
HN
Obj -149
Optimal LP solution
```

Variables						
Name	Index	Stage	Value	Rscos	Lob	Upb
X1	0	1	12	0	0	inf
X2	1	1	0	0	0	inf
Constraints						
Name	Index	Stage	SPrice	RowAct	Lhs	Rhs
R1	0	1	0	-12	0	inf
END						

Solver Output

```
IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic
Initiative" is accessing CPLEX 12 with option(s): "e m b q ".
Reading time = 0.000922 s.
Stage 1 has 1 rows, 2 columns, and 2 nonzeros.
Stage 2 has }3\mathrm{ rows, 1 columns, and 4 nonzeros.
Stage 3 has 3 rows, 1 columns, and 4 nonzeros.
Stage 4 has 3 rows, 1 columns, and 4 nonzeros.
Problem has 4 stages, 8 scenarios, and 62 random elements.
DEP has 43 rows, 16 columns, and }58\mathrm{ nonzeros.
Tried aggregator 1 time.
LP Presolve eliminated 43 rows and 16 columns.
All rows and columns eliminated.
Presolve time = 0.00 sec.
Total real time on 2 threads = 0.00 sec.
Number of iterations = 0.
Solution time = 0.002468 s.
Optimal solution found, objective = -149.
```

The output from the external LP solver (CPLEX) for the deterministic equivalent problem is preserved as can be seen above.

E Performance on Test Models

The results presented in this section are based on the computational study by Zverovich et al. (2012).

E. 1 Experimental Setup

The computational experiments were performed on a Linux machine with 2.4 GHz Intel CORE i5 M520 CPU and 6 GiB of RAM. Deterministic equivalents were solved with CPLEX 12.1 dual simplex and barrier optimisers. Crossover to a basic solution was disabled for the barrier optimiser and the number of threads was limited to 1 . For other CPLEX options the default values were used.

The times are reported in seconds with times of reading input files included. For simplex and IPM the times of constructing deterministic equivalent problems are also included though it should be noted that they only amount to small fractions of the total. CPLEX linear and quadratic programming solver was used to solve master problem and subproblems in the implementation of Benders decomposition with and without level regularisation. All the test problems were presented in SMPS format introduced by Birge et al. (1987).

The first-stage solution of the expected value problem was taken as a starting point for the decomposition methods. The values of the parameters are specified below.

- Benders decomposition with regularisation by the level method: $\lambda=0.5$,
- Regularised decomposition:
$\sigma=1, \gamma=0.9$.
- Trust region method based on l_{∞} norm:
$\Delta=1, \Delta_{h i}=10^{3}$ (except for the saphir problems where $\Delta_{h i}=10^{9}$), $\xi=10^{-4}$.

E. 2 Data Sets

We considered test problems which were drawn from four different sources described in Table 11. Table 12 gives the dimensions of these problems.

Most of the benchmark problems have stochasticity only in the right-hand side (RHS). Notable exception is the SAPHIR family of problems which has random elements both in the RHS and the constraint matrix.

Table 12: Dimensions of test problems

Name	Scen	Stage 1		Stage 2		Deterministic Equivalent		
		Rows	Cols	Rows	Cols	Rows	Cols	Nonzeros
fxm	6	92	114	238	343	1520	2172	12139
	16	92	114	238	343	3900	5602	31239
fxmev	1	92	114	238	343	330	457	2589
pltexpa	6	62	188	104	272	686	1820	3703
	16	62	188	104	272	1726	4540	9233

Table 12: Dimensions of test problems (continued)

Name	Scen	Stage 1		Stage 2		Deterministic Equivalent		
		Rows	Cols	Rows	Cols	Rows	Cols	Nonzeros
stormg2	8	185	121	528	1259	4409	10193	27424
	27	185	121	528	1259	14441	34114	90903
	125	185	121	528	1259	66185	157496	418321
	1000	185	121	528	1259	528185	1259121	3341696
airl-first	25	2	4	6	8	152	204	604
airl-second	25	2	4	6	8	152	204	604
airl-randgen	676	2	4	6	8	4058	5412	16228
assets	100	5	13	5	13	505	1313	2621
	37500	5	13	5	13	187505	487513	975021
4node	1	14	52	74	186	88	238	756
	2	14	52	74	186	162	424	1224
	4	14	52	74	186	310	796	2160
	8	14	52	74	186	606	1540	4032
	16	14	52	74	186	1198	3028	7776
	32	14	52	74	186	2382	6004	15264
	64	14	52	74	186	4750	11956	30240
	128	14	52	74	186	9486	23860	60192
	256	14	52	74	186	18958	47668	120096
	512	14	52	74	186	37902	95284	239904
	1024	14	52	74	186	75790	190516	479520
	2048	14	52	74	186	151566	380980	958752
	4096	14	52	74	186	303118	761908	1917216
	8192	14	52	74	186	606222	1523764	3834144
	16384	14	52	74	186	1212430	3047476	7668000
	32768	14	52	74	186	2424846	6094900	15335712
4node-base	1	16	52	74	186	90	238	772
	2	16	52	74	186	164	424	1240
	4	16	52	74	186	312	796	2176
	8	16	52	74	186	608	1540	4048
	16	16	52	74	186	1200	3028	7792
	32	16	52	74	186	2384	6004	15280
	64	16	52	74	186	4752	11956	30256
	128	16	52	74	186	9488	23860	60208
	256	16	52	74	186	18960	47668	120112
	512	16	52	74	186	37904	95284	239920
	1024	16	52	74	186	75792	190516	479536
	2048	16	52	74	186	151568	380980	958768
	4096	16	52	74	186	303120	761908	1917232
	8192	16	52	74	186	606224	1523764	3834160
	16384	16	52	74	186	1212432	3047476	7668016
	32768	16	52	74	186	2424848	6094900	15335728
4node-old	32	14	52	74	186	2382	6004	15264
chem	2	38	39	46	41	130	121	289
chem-base	2	38	39	40	41	118	121	277
lands	3	2	4	7	12	23	40	92
lands-blocks	3	2	4	7	12	23	40	92

Table 12: Dimensions of test problems (continued)

Name	Scen	Stage 1		Stage 2		Deterministic Equivalent		
		Rows	Cols	Rows	Cols	Rows	Cols	Nonzeros
env-aggr	5	48	49	48	49	288	294	876
env-first	5	48	49	48	49	288	294	876
env-loose	5	48	49	48	49	288	294	876
env	15	48	49	48	49	768	784	2356
	1200	48	49	48	49	57648	58849	177736
	1875	48	49	48	49	90048	91924	277636
	3780	48	49	48	49	181488	185269	559576
	5292	48	49	48	49	254064	259357	783352
	8232	48	49	48	49	395184	403417	1218472
	32928	48	49	48	49	1580592	1613521	4873480
env-diss-aggr	5	48	49	48	49	288	294	876
env-diss-first	5	48	49	48	49	288	294	876
env-diss-loose	5	48	49	48	49	288	294	876
env-diss	15	48	49	48	49	768	784	2356
	1200	48	49	48	49	57648	58849	177736
	1875	48	49	48	49	90048	91924	277636
	3780	48	49	48	49	181488	185269	559576
	5292	48	49	48	49	254064	259357	783352
	8232	48	49	48	49	395184	403417	1218472
	32928	48	49	48	49	1580592	1613521	4873480
phone1	1	1	8	23	85	24	93	309
phone	32768	1	8	23	85	753665	2785288	9863176
stocfor1	1	15	15	102	96	117	111	447
stocfor2	64	15	15	102	96	6543	6159	26907
rand0	2000	50	100	25	50	50050	100100	754501
	4000	50	100	25	50	100050	200100	1508501
	6000	50	100	25	50	150050	300100	2262501
	8000	50	100	25	50	200050	400100	3016501
	10000	50	100	25	50	250050	500100	3770501
rand1	2000	100	200	50	100	100100	200200	3006001
	4000	100	200	50	100	200100	400200	6010001
	6000	100	200	50	100	300100	600200	9014001
	8000	100	200	50	100	400100	800200	12018001
	10000	100	200	50	100	500100	1000200	15022001
rand2	2000	150	300	75	150	150150	300300	6758501
	4000	150	300	75	150	300150	600300	13512501
	6000	150	300	75	150	450150	900300	20266501
	8000	150	300	75	150	600150	1200300	27020501
	10000	150	300	75	150	750150	1500300	33774501
saphir	50	32	53	8678	3924	433932	196253	1136753
	100	32	53	8678	3924	867832	392453	2273403
	200	32	53	8678	3924	1735632	784853	4546703
	500	32	53	8678	3924	4339032	1962053	11366603
	1000	32	53	8678	3924	8678032	3924053	22733103

Table 11: Sources of test problems

Source	Reference	Comments
1. POSTS collection	Holmes (1995)	Two-stage problems from the (PO)rtable (S)tochastic program- ming (T)est (S)et (POSTS)
2. Slptestset		
collection	Ariyawansa and Felt	Two-stage problems from the col- lection of stochastic LP test prob-
3. Random	Kall and Mayer	lems
Artificial test problems generated		
problems	(1998)	with pseudo random stochastic LP problem generator GENSLP
4. SAMPL	König et al. (2007),	Problems instantiated from the problems
	Valente et al. (2008)	SAPHIR gas portfolio planning model formulated in Stochastic
		AMPL (SAMPL)

It should be noted that the problems generated with GENSLP do not possess any internal structure inherent in real-world problems. However they are still useful for the purposes of comparing scale-up properties of algorithms.

E. 3 Computational Results

The computational results are presented in Tables 13 and 14. Iter denotes the number of iterations. For decomposition methods this is the number of master iterations.

Finally we present the results in the form of performance profiles. The performance profile for a solver is defined by Dolan and Moré (2002) as the cumulative distribution function for a performance metric. We use the ratio of the solving time versus the best time as the performance metric. Let P and M be the set of problems and the set of solution methods respectively. We define by $t_{p, m}$ the time of solving problem $p \in P$ with method $m \in M$. For every pair (p, m) we compute performance ratio

$$
r_{p, m}=\frac{t_{p, m}}{\min \left\{t_{p, m} \mid m \in M\right\}},
$$

If method m failed to solve problem p the formula above is not defined. In this case we set $r_{p, m}:=\infty$.

The cumulative distribution function for the performance ratio is defined as follows:

$$
\rho_{m}(\tau)=\frac{\left|\left\{p \in P \mid r_{p, m} \leq \tau\right\}\right|}{|P|}
$$

We calculated performance profile of each considered method on the whole set of test problems. These profiles are shown in Figure 6. The value of $\rho_{m}(\tau)$ gives the probability that method m solves a problem within a ratio τ of the best solver. For example according to Figure 6 level method was the first in more than 30% of cases and solved all the problems within a ratio 6 of the best time.

The notable advantages of performance profiles over other approaches to performance comparison are as follows. Firstly, they minimize the influence of a small subset of problems on the benchmarking process. Secondly, there is no need to discard solver failures. Thirdly, performance profiles provide a visualisation of large sets of test results as we have in our case.

As can be seen from Figure 6, while in most cases the performance of CPLEX barrier optimiser is better it was not able to solve some of the problems. Several large instances were not solved due to high memory requirements of constructing and solving deterministic equivalent. Other failures were caused by numerical difficulties. The performance profile of pure Benders decomposition is dominated by the the level method profile.

Table 13: Performance of DEP solution methods and level regularisation

Name	Scen	DEP - Simplex		DEP - IPM		Level		Optimal Value
		Time	Iter	Time	Iter	Time	Iter	
fxm	6	0.06	1259	0.05	17	0.15	20	18417.1
	16	0.22	3461	0.13	23	0.15	20	18416.8
fxmev	1	0.01	273	0.01	14	0.13	20	18416.8
pltexpa	6	0.01	324	0.03	14	0.02	1	-9.47935
	16	0.01	801	0.08	16	0.02	1	-9.66331
stormg2	8	0.08	3649	0.25	28	0.16	20	15535200
	27	0.47	12770	2.27	27	0.31	17	15509000
	125	5.10	70177	8.85	57	0.93	17	15512100
	1000	226.70	753739	137.94	114	6.21	21	15802600
airl-first	25	0.01	162	0.01	9	0.03	17	249102
airl-second	25	0.00	145	0.01	11	0.03	17	269665
airl-randgen	676	0.25	4544	0.05	11	0.22	18	250262
assets	100	0.02	494	0.02	17	0.03	1	-723.839
	37500	1046.85	190774	6.37	24	87.55	2	-695.963
4node	1	0.01	110	0.01	12	0.06	21	413.388
	2	0.01	196	0.01	14	0.10	42	414.013
	4	0.01	326	0.02	17	0.11	45	416.513
	8	0.03	825	0.05	18	0.10	45	418.513
	16	0.06	1548	0.11	17	0.15	44	423.013
	32	0.16	2948	0.40	15	0.22	51	423.013
	64	0.72	7185	0.44	17	0.36	54	423.013
	128	2.30	12053	0.50	26	0.47	50	423.013
	256	7.69	31745	1.05	30	0.87	48	425.375
	512	57.89	57200	2.35	30	2.12	51	429.963
	1024	293.19	133318	5.28	32	3.95	53	434.112
	2048	1360.60	285017	12.44	36	7.82	49	441.738
	4096	-	-	32.67	46	9.12	46	446.856
	8192	-	-	53.82	45	22.68	55	446.856
	16384	-	-	113.20	46	45.24	52	446.856
	32768	-	-	257.96	48	127.86	62	446.856

Table 13: Performance of DEP solution methods and level regularisation (continued)

Name	Scen	DEP - Simplex		DEP - IPM		Level		Optimal Value
		Time	Iter	Time	Iter	Time	Iter	
4node-base	1	0.01	111	0.01	11	0.04	16	413.388
	2	0.01	196	0.01	14	0.06	29	414.013
	4	0.01	421	0.02	14	0.07	30	414.388
	8	0.03	887	0.04	15	0.10	35	414.688
	16	0.06	1672	0.11	17	0.10	30	414.688
	32	0.15	3318	0.40	15	0.16	37	416.6
	64	0.49	7745	0.36	13	0.22	33	416.6
	128	1.58	17217	0.33	19	0.35	37	416.6
	256	4.42	36201	0.81	23	0.53	31	417.162
	512	22.44	80941	2.20	29	1.45	37	420.293
	1024	141.91	187231	5.21	32	3.33	41	423.05
	2048	694.89	337082	11.12	32	6.13	42	423.763
	4096	-	-	27.03	37	10.60	39	424.753
	8192	-	-	51.29	40	24.99	48	424.775
	16384	-	-	177.81	73	47.31	41	424.775
	32768	-	-	242.91	48	102.29	49	424.775
4node-old	32	0.20	3645	0.49	18	0.09	20	83094.1
chem	2	0.00	29	0.00	11	0.03	15	-13009.2
chem-base	2	0.00	31	0.00	11	0.05	14	-13009.2
lands	3	0.00	21	0.00	9	0.02	10	381.853
lands-blocks	3	0.00	21	0.00	9	0.02	10	381.853
env-aggr	5	0.01	117	0.01	12	0.04	16	20478.7
env-first	5	0.01	112	0.01	11	0.02	1	19777.4
env-loose	5	0.01	112	0.01	12	0.02	1	19777.4
env	15	0.01	321	0.01	16	0.05	15	22265.3
	1200	1.38	23557	1.44	34	1.73	15	22428.9
	1875	2.90	36567	2.60	34	2.80	15	22447.1
	3780	11.21	73421	7.38	40	5.47	15	22441
	5292	20.28	102757	12.19	42	7.67	15	22438.4
	8232	62.25	318430	-	-	12.58	15	22439.1
	32928	934.38	1294480	-	-	75.67	15	22439.1
env-diss-aggr	5	0.01	131	0.01	9	0.05	22	15963.9
env-diss-first	5	0.01	122	0.01	9	0.04	12	14794.6
env-diss-loose	5	0.01	122	0.01	9	0.03	5	14794.6
env-diss	15	0.01	357	0.02	13	0.10	35	20773.9
	1200	1.96	26158	1.99	50	2.80	35	20808.6
	1875	4.41	40776	3.63	53	4.49	36	20809.3
	3780	16.94	82363	9.32	57	8.87	36	20794.7
	5292	22.37	113894	16.17	66	12.95	38	20788.6
	8232	70.90	318192	-	-	22.49	41	20799.4
	32928	1369.97	1296010	-	-	112.46	41	20799.4
phone1	1	0.00	19	0.01	8	0.02	1	36.9
phone	32768	-	-	50.91	26	48.23	1	36.9

Table 13: Performance of DEP solution methods and level regularisation (continued)

Name	Scen	DEP - Simplex		DEP - IPM		Level		Optimal Value
		Time	Iter	Time	Iter	Time	Iter	
stocfor1	1	0.00	39	0.01	11	0.03	6	-41132
stocfor2	64	0.12	2067	0.08	17	0.12	9	-39772.4
rand0	2000	373.46	73437	9.41	33	6.10	44	162.146
	4000	1603.25	119712	34.28	62	10.06	32	199.032
	6000	-	-	48.84	60	21.17	51	140.275
	8000	-	-	56.89	49	28.86	50	170.318
	10000	-	-	98.51	71	52.31	71	139.129
rand1	2000	-	-	39.97	24	52.70	74	244.159
	4000	-	-	92.71	28	72.30	59	259.346
	6000	-	-	158.24	32	103.00	58	297.563
	8000	-	-	228.68	34	141.81	65	262.451
	10000	-	-	320.10	39	181.98	63	298.638
rand2	2000	-	-	102.61	22	145.22	65	209.151
	4000	-	-	225.71	24	170.08	42	218.247
	6000	-	-	400.52	28	369.35	52	239.721
	8000	-	-	546.98	29	369.01	44	239.158
	10000	-	-	754.52	32	623.59	52	231.706
saphir	50	269.17	84727	-	-	341.86	43	129505000
	100	685.50	152866	-	-	700.44	46	129058000
	200	-	-	549.45	167	-	-	141473000
	500	-	-	-	-	608.48	44	137871000
	1000	-	-	-	-	804.11	46	133036000

Table 14: Performance of decomposition methods

Name	Scen	Benders		Level		TR		RD	
		Time	Iter	Time	Iter	Time	Iter	Time	Iter
fxm	6	0.08	25	0.15	20	0.09	22	0.05	5
	16	0.09	25	0.15	20	0.11	22	0.07	5
fxmev	1	0.08	25	0.13	20	0.08	22	0.05	5
pltexpa	6	0.02	1	0.02	1	0.02	1	0.03	1
	16	0.02	1	0.02	1	0.02	1	0.03	1
stormg2	8	0.14	23	0.16	20	0.08	9	0.10	10
	27	0.47	32	0.31	17	0.18	10	0.23	11
	125	1.73	34	0.93	17	0.50	8	0.89	12
	1000	11.56	41	6.21	21	3.38	6	7.30	11
airl-first	25	0.04	16	0.03	17	0.03	6	0.03	10
airl-second	25	0.02	10	0.03	17	0.02	4	0.03	5
airl-randgen	676	0.22	18	0.22	18	0.22	6	0.29	6
assets	100	0.02	1	0.03	1	0.03	1	0.02	1
	37500	87.68	2	87.55	2	172.23	2	114.38	1

Table 14: Performance of decomposition methods (continued)

Name	Scen	Benders		Level		TR		RD	
		Time	Iter	Time	Iter	Time	Iter	Time	Iter
4node	1	0.03	24	0.06	21	0.03	8	0.03	15
	2	0.04	38	0.10	42	0.02	16	0.05	29
	4	0.04	41	0.11	45	0.03	14	0.05	19
	8	0.07	64	0.10	45	0.03	13	0.05	16
	16	0.11	67	0.15	44	0.04	12	0.05	13
	32	0.23	100	0.22	51	0.05	10	0.07	13
	64	0.27	80	0.36	54	0.08	11	0.12	14
	128	0.39	74	0.47	50	0.15	11	0.19	14
	256	0.95	71	0.87	48	0.20	7	0.29	9
	512	3.72	92	2.12	51	0.46	7	0.62	9
	1024	5.14	70	3.95	53	0.42	3	1.23	10
	2048	11.78	83	7.82	49	1.30	4	1.22	5
	4096	18.46	89	9.12	46	2.79	3	2.03	4
	8192	46.56	106	22.68	55	9.87	3	6.59	4
	16384	99.00	110	45.24	52	38.28	3	27.50	4
	32768	194.68	122	127.86	62	299.85	3	222.61	4
4node-base	1	0.03	31	0.04	16	0.03	21	0.03	14
	2	0.04	44	0.06	29	0.03	19	0.05	19
	4	0.06	58	0.07	30	0.04	20	0.07	34
	8	0.05	47	0.10	35	0.04	19	0.08	28
	16	0.08	56	0.10	30	0.06	21	0.11	28
	32	0.17	63	0.16	37	0.07	13	0.18	22
	64	0.23	61	0.22	33	0.17	19	0.30	21
	128	0.39	65	0.35	37	0.34	19	0.63	23
	256	0.89	66	0.53	31	0.45	11	1.81	26
	512	3.27	84	1.45	37	1.84	14	4.98	29
	1024	9.57	115	3.33	41	5.53	13	9.17	17
	2048	19.72	142	6.13	42	21.82	13	31.08	21
	4096	38.51	174	10.60	39	85.68	12	146.50	18
	8192	133.45	290	24.99	48	354.05	14	-	-
	16384	164.07	175	47.31	41	1430.72	13	-	-
	32768	314.31	191	102.29	49	-	-	-	-
4node-old	32	0.08	30	0.09	20	0.04	7	0.09	10
chem	2	0.04	7	0.03	15	0.03	13	0.04	19
chem-base	2	0.02	6	0.05	14	0.02	13	0.04	22
lands	3	0.02	8	0.02	10	0.02	5	0.03	17
lands-blocks	3	0.01	8	0.02	10	0.02	5	0.03	17
env-aggr	5	0.02	3	0.04	16	0.02	3	0.03	5
env-first	5	0.02	1	0.02	1	0.02	1	0.02	1
env-loose	5	0.01	1	0.02	1	0.02	1	0.02	1
env	15	0.04	3	0.05	15	0.03	3	0.03	5
	1200	0.34	3	1.73	15	0.48	3	0.76	5
	1875	0.57	3	2.80	15	0.90	3	1.50	5
	3780	1.26	3	5.47	15	2.48	3	3.79	5
	5292	1.96	3	7.67	15	4.51	3	5.89	5
	8232	3.70	3	12.58	15	10.67	3	12.54	5
	32928	39.88	3	75.67	15	211.90	3	212.05	5

Table 14: Performance of decomposition methods (continued)

Name	Scen	Benders		Level		TR		RD	
		Time	Iter	Time	Iter	Time	Iter	Time	Iter
env-diss-aggr	5	0.03	9	0.05	22	0.03	9	0.03	17
env-diss-first	5	0.02	14	0.04	12	0.02	4	0.03	4
env-diss-loose	5	0.03	15	0.03	5	0.02	4	0.02	4
env-diss	15	0.05	27	0.10	35	0.05	18	0.07	12
	1200	1.13	24	2.80	35	2.25	18	3.45	19
	1875	2.50	29	4.49	36	5.52	19	4.52	15
	3780	5.04	29	8.87	36	20.23	19	8.98	11
	5292	8.14	34	12.95	38	40.39	17	17.90	13
	8232	14.21	35	22.49	41	119.88	16	99.19	23
	32928	79.52	35	112.46	41	-	-	-	-
phone1	1	0.02	1	0.02	1	0.02	1	0.02	1
phone	32768	48.34	1	48.23	1	73.45	1	73.75	1
stocfor1	1	0.02	6	0.03	6	0.02	2	0.02	2
stocfor2	64	0.10	7	0.12	9	0.18	14	0.23	18
rand0	2000	10.42	80	6.10	44	30.33	9	93.78	16
	4000	19.97	69	10.06	32	82.75	8	591.45	14
	6000	41.82	108	21.17	51	275.97	9	-	-
	8000	65.51	127	28.86	50	423.51	9	-	-
	10000	153.07	230	52.31	71	871.00	10	-	-
rand1	2000	265.14	391	52.70	74	155.81	12	361.54	17
	4000	587.22	502	72.30	59	508.18	11	-	-
	6000	649.58	385	103.00	58	937.74	11	-	-
	8000	917.24	453	141.81	65	1801.43	9	-	-
	10000	1160.62	430	181.98	63	-	-	-	-
rand2	2000	1800.00	818	145.22	65	334.36	12	794.31	17
	4000	1616.56	414	170.08	42	813.49	11	-	-
	6000	-	-	369.35	52	-	-	-	-
	8000	-	-	369.01	44	-	-	-	-
	10000	-	-	623.59	52	-	-	-	-
saphir	50	733.37	128	341.86	43	578.87	110	-	-
	100	1051.89	123	700.44	46	-	-	-	-
	200	-	-	-	-	-	-	-	-
	500	1109.48	122	608.48	44	1283.97	99	-	-
	1000	1444.17	124	804.11	46	-	-	-	-

E. 4 Choice of IPM Solver

In order to justify the use of CPLEX IPM in our experiments we compared its performance to another state-of-the-art interior point solver. The second solver, HOPDM (Gondzio, 1995; Colombo and Gondzio, 2008), is an implementation of the infeasible primal-dual interior point method. Depending on the problem, it uses either the normal equations with Schur complement or augmented system factorisation.

The results summarised in Table 15 show that while it took HOPDM on average less iterations to solve a problem, CPLEX was faster in our benchmarks. This can be explained by

Figure 6: Performance profiles
the latter being better optimised to the underlying hardware. In particular, CPLEX uses high performance Intel Math Kernel Library which is tuned for the hardware we were using in the tests.

Table 15: Summary of CPLEX and HOPDM performance

	CPLEX	HOPDM
Average Iterations	29	21
Average Time	56.66	170.50
Solved Problems	87	78

E. 5 Comments on Scale-Up Properties and on Accuracy

We performed a set of experiments recording the change in the gap between lower and upper bounds on objective function in the decomposition methods. The results are shown in Figures $7-10$.

The computational results given in the previous section where obtained using the relative stopping tolerance $\varepsilon=10^{-5}$ for the Benders decomposition with and without regularisation by the level method, i.e. the method terminated if $\left(z^{*}-z_{*}\right) /\left(\left|z_{*}\right|+10^{-10}\right) \leq \varepsilon$, where z_{*} and z^{*} are, respectively, lower and upper bounds on the value of the objective function. The stopping criteria in the trust region algorithm and regularised decomposition are different because these methods do not provide global lower bound. Therefore ε was set to a lower value of 10^{-6} with the following exceptions that were made to achieve the desirable precision:

- env-diss with 8232 scenarios: $\varepsilon=10^{-10}$ in RD,
- saphir: $\varepsilon=10^{-10}$ in RD and TR.

For CPLEX barrier optimiser the default complementarity tolerance was used as a stopping criterion.

Figure 7: Gap between lower and upper bounds for storm-1000 problem

Figure 8: Gap between lower and upper bounds for 4node-32768 problem

Figure 9: Gap between lower and upper bounds for rand1-10000 problem

Figure 10: Gap between lower and upper bounds for saphir-1000 problem

Figure 11: Time vs the number of scenarios on the 4 node problems

[^0]: ${ }^{1}$ In a 'Markovian' situation the t-th stage involves only x_{t} and x_{t-1}. FortSP handles non-Markovian as well as Markovian situations

[^1]: ${ }^{2}$ VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this option to 1 forces both --solver-hn and --solve-ws to be set. In order to calculate VSS we need to know the EEV - expected value of the expected value solution. EEV is calculated by solving the EV model, fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a probability-weighted average value for the objective - which is the VSS. Option --vss-fstage can be used to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the theoretical result is often meaningless as a complete fix may be infeasible)

[^2]: ${ }^{3}$ VSS - Value of Stochastic Solution - requires the solution of both HN and EV models. Setting this option to 1 forces both --solver-hn and --solve-ws to be set. In order to calculate VSS we need to

[^3]: know the EEV - expected value of the expected value solution. EEV is calculated by solving the EV model, fixing the result so obtained in all the WS models (all stages but the last), which are then solved to give a probability-weighted average value for the objective - which is the VSS. Option --vss-fstage can be used to restrict the fix that is performed to first stage variables only (although in theory this is not correct, the theoretical result is often meaningless as a complete fix may be infeasible).

