
 
 
 
 
 

FortMP – Mex Manual 
 

Last Update 
23 April 2008 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 



Contents

1 Scope and Purpose 1

2 Introduction and Background 2

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 The Problems Solved by FortMP . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.3 Control of the Algorithms by SPECS Commands . . . . . . . . . . . . . . . . . . 3

2.4 Library Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Problem Statement 4

3.1 LP and MIP problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 QP and QMIP Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 The External Data Interface 6

4.1 Solver Input Scalar arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 Solver Input array arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Solver Output scalar arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.4 Solver Output array arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 FortMP-mex Library 9

5.1 Functions to initiate execution and set-up controls . . . . . . . . . . . . . . . . . 9

5.2 Functions to read data from file to the external data interface . . . . . . . . . . 10

5.3 Functions to solve a problem and report the solution to the user . . . . . . . . . 10

5.4 Call Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4.1 Start-up Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.4.2 Functions to read data from file to the external interface . . . . . . . . . . 11

5.4.3 Functions to solve a problem and report solution to the user . . . . . . . 12

6 High Level Library Functions 13

i



7 Examples in Matlab 15

7.1 Advanced examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 SPECS Commands for Control of Solver and Data Input 22

8.1 Run-time SPECS control file. The ’SPID’ parameter . . . . . . . . . . . . . . . 22

8.2 Most Important SPECS commands . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.3 External Interface Save and Restart commands . . . . . . . . . . . . . . . . . . . 25

ii



Chapter 1

Scope and Purpose

This document desribes how the optimization software system FortMP can be used as an add-on
to MATLAB. FortMP is an industrial strength large scale optimization solver system developed
by CARISMA, Brunel University as a research tool which is used also for teaching with many
industrial applications. The purpose of this document is to explain to a user of MATLAB how
through the MEX-file feature, the user can invoke FortMP dynamic link library(DLL) to create
prototype models and applications of optimization within MATLAB. Although MATLAB has
its own optimization toolbox , FortMP provides a powerful and desirable alternative

(a) for large scale sparse models and

(b) for discrete(integer) decision models

1



Chapter 2

Introduction and Background

2.1 Introduction

FortMP is an industrial strength large scale optimization solver system developed by CARISMA,
Brunel University as a research tool which is used also for teaching with many industrial applica-
tions. FortMP runs on WINDOWS, UNIX and LINUX operating systems. FortMP is connected
to modelling languages such as MPL [15] ,SPInE [6] and AMPL [1]. FortMP can also be executed
by programs written in C,C++,Visual Basic,Fortran77 and Fortran90. FortMP is available

(a) as an executable stand alone optimization solver [3]

(b) as a static library and

(c) as a DLL

From MATLAB, FORTMP can be invoked by the C-mex dll feature and connecting to the
MFortMP.dll.

2.2 The Problems Solved by FortMP

FortMP itself is designed to solve problems of the following type:-

LP Linear Programming: with linear objective, linear con-
straints and continuous variables

MIP Mixed Integer Programming: with linear objective,
linear constraints and mixed variable types - discrete and
integer

QP Quadratic Programming: with quadratic objective, lin-
ear constraints and continuous variables

QMIP Quadratic Mixed Integer Programming: with
quadratic objective, linear constraints and mixed variable
types - discrete and integer

SP Stochastic Programming: Solves two stage and multi-
stage stochastic programming problems with recourse

2



In addition to many instances of LP and MIP applications of FortMP and enhanced solution
algorithms [7, 8, 9], it is also positioned as a leading QP and SP solver.

For QP and QMIP has been extensively used in financial applications [10] and acts as the
solver engine of choice within the PAS system of UBS Warbug; this system has a global client
base [5, 14]. The stochastic solver FortSP [13, 2, 4] is also used widely and has been been applied
to supply chain planning and financial applications.

CARISMA and OptiRisk Systems have developed extensive training material for LP, MIP,
QP and SP applications. For more information on training readers are referred to [12, 16, 11]

The library establishes a structure of scalar variables and arrays, referred to as the ’External
Data Interface’ in which the users specify a problem to be solved. The structure is passed as
parameter arguments in the calls that solve a problem. Calls are available both to solve a problem
stated in the external data interface form and to load a problem from an input data file to this
form. Input data files may be in standard MPS (extended) layout or in a free-form equivalent.

2.3 Control of the Algorithms by SPECS Commands

A large number of parameter controls referred to as ’SPECS Commands’, are available, both
to tune the solver for difficult problems, and to specify action such as ’Save’ and ’Restart’
enabling a great deal of time-saving in many cases. Initial default values for all these controls
are set up when the system is initiated and in the case of library use any control may be reset
by a call that passes the appropriate SPECS command prior to calling the solver. The default
values should serve for many users however.

In the case of the stand-alone FortMP program SPECS commands are entered via a special
control-file named ’FORTMP.SPC’. This method of changing the controls is also available to
the library user, and is more flexible as controls can be changed without re-compiling the system.
All SPECS commands are described in the FortMP manual and extensions (in particular file
’Commands.doc’). In this document there is a description of those commands that are most
useful for the general user.

2.4 Library Environment

The original environment for using the library is as a sub-system within a console-type program
so that the system can display its progress from time to time to the user. In order to change
this action for a Windows environment the user needs to write his own message output system,
over-riding the mechanism provided in the library. Since it is not possible to over-ride a DLL
subroutine, there is a system of ’Call-backs’ to enable this to take place. The user codes certain
routines in his own system to be invoked at relevant points during execution of library calls, and
specifies their entry-point in the start-up calls made to the DLL prior to the main library-calls.
Unfortunately this feature is not yet available for use in matlab.

At the moment the library is ’Single-threaded’, which means that multi-processing of separate
problems cannot be attempted. A lock is provided (Windows32 version only) to safeguard the
system.

3



Chapter 3

Problem Statement

Given below are the mathematical statements of the kinds of problem that can be solved with
the FortMP library.

3.1 LP and MIP problems

The LP or MIP problem may be stated as follows:

min/Max
x

k + cT x (3.1)

s.t.
L ≤ Ax ≤ U

l ≤ x ≤ u

Where

k is a scalar constant offset to the objective
c is an n- vector of the cost coefficients c1, c2, . . . cn.
x is an n- vector of the structural variables x1, x2, . . . xn.
L is an m-vector of lower right hand sides L1, L2, . . . Lm.
A is an m x n matrix of coefficients aij .
U is an m-vector of upper right hand sides U1, U2, . . . Um.
l is an n- vector of lower bounds l1, l2, . . . ln.
u is an n- vector of upper bounds u1, u2, . . . un.

and in addition for MIP some or all of the variables xj may be of one of the following types:

• Binary, that is to say restricted to be either zero or one.

• Integer, that is to say restricted to integer values

• Semi-continuous, that is to say either zero, or continuous in the range 1.0 to an upper
bound

• SOS type 1, member of set introduced for discrete separable programming

• SOS type 2, member of set introduced for continuous separable programming

4



3.2 QP and QMIP Problems

min
x

k+ cT x +
1
2
xT Qx (3.2)

s.t.
L ≤ Ax ≤ U

l ≤ x ≤ u

k is a scalar constant offset to the objective
c is an n- vector of the cost coefficients c1, c2, . . . cn.
x is an n- vector of the structural variables x1, x2, . . . xn.
Q is an symmetric positive semi-definite matrix.
L is an m-vector of lower right hand sides L1, L2, . . . Lm.
A is an m x n matrix of coefficients aij .
U is an m-vector of upper right hand sides U1, U2, . . . Um.
l is an n- vector of lower bounds l1, l2, . . . ln.
u is an n- vector of upper bounds u1, u2, . . . un.

and in addition for QMIP some or all of the variables xj may be of one of the following types:

• Binary, that is to say restricted to be either zero or one.

• Integer, that is to say restricted to integer values

5



Chapter 4

The External Data Interface

The external data interface and certain other arguments are described here in order to avoid re-
peating parameter descriptions many different times. Note that solver inputs to FMP SUBLP2C
etc. are actually outputs of the data-read function FMP LP2INPC etc.

4.1 Solver Input Scalar arguments

Variable Type Description
mr INTEGER number of rows -m
nc INTEGER number of columns -n
naij INTEGER number of non-zero entries in the A-matrix
nqij INTEGER number of non-zero entries in the Q-matrix
nset INTEGER number of special ordered sets (LP only)
koff DOUBLE constant offset to objective -k

pname STRING model name. Only the first 8 characters are used
spid STRING identity of the BEGIN-line in the SPECS file

6



4.2 Solver Input array arguments

Array(Length) Type Desciption
aij(naij) DOUBLE Non-zero elements of the A-matrix

arow(naij) INTEGER Row indices belonging to corresponding entries in
AIJ

acol(naij) INTEGER Column indices of the A-matrix belonging to the
corresponding entries in AIJ

upb(nc) DOUBLE Upper bound vector -u. Any value greater than
or equal to 1031 indicates that no upper bound
exists.

lob(nc) DOUBLE Lower bound vector -l. Any value less than or
equal to −1031 indicates that no lower bound ex-
ists.

frhs(mr) DOUBLE Upper RHS vector -U. Any value greater than or
equal to 1031 indicates that no upper bound exists.

flhs(mr) DOUBLE Lower RHS vector -L. Any value less than or equal
to −1031 indicates that no lower bound exists.

cost(nc) DOUBLE Cost vector -c.
mitype(nc) INTEGER Variable type code for MIP - see below
qij(nqij) DOUBLE Non-zero elements of the Q-matrix.

qrow(nqij) INTEGER Row indices of the Q-matrix belonging to the cor-
responding entries in qij.

qcol(nqij) INTEGER Column indices of the Q-matrix belonging to the
corresponding entries in qij.

sref(nset) INTEGER Reference row numbers of each special ordered set.
sfun(nset) INTEGER Function row numbers of each special ordered set.
sbeg(nset) INTEGER First column number in each special ordered set.
send(nset) INTEGER Last column number in each special ordered set.

Arrays aij,arow, and acol do not need to organized in any particular sequence so long as the
entries correspond to each other.

Coding in array MITYPE as follows:

CODE MEANING
0 Continuous variable
1 Binary Variable
2 Integer Variable
3 Semi-continuous Variable
4 Member of SOS type 1
5 Member of SOS type 2

Codes 3, 4 and 5 may not be used in a QP model.

Arrays qij,qrow and qcol do not need to be organised in any particular sequence so long as
the entries correspond to each other. However the full Q-matrix should be supplied, and if user
states the quadratic objective as an algebraic expression then its coefficients are to be doubled
in Q. The transposed positions of the upper and lower triangle need not be identical, and may
be added and put in as a single entry with indices in either order (FortMP does this operation
in any case).

Special Ordered Sets are described in the manual sections 6.2.3 and 6.2.4.

7



4.3 Solver Output scalar arguments

Variable Type Description
obj DOUBLE Objective value of the solution.
stsl INTEGER Solution status. Standard values are shown below
tctn INTEGER Terminate criterion. A value zero indicates that

the execution was successful, subject to the value
of stsl.

Standard values for solution status stsl are:-

STSL = 0 No solution has been obtained
STSL = 1 The problem is infeasible
STSL = 2 The problem is unbounded
STSL = 3 Continuous optimum solution
STSL = 4 Integer feasible solution
STSL = 5 Integer optimum solution

4.4 Solver Output array arguments

In the tables which transfer output values back to the user, both logical and structural variables
are represented in this order, plus in addition one extra position for the objective function at the
beginning. Table-size is therefore

1 + MR + NC

where:-

Position 1 refers to the objective
Positions 2 to (1+MR) refer to logicals
Positions (2+MR) to (1+MR+NC) refer to structurals

The tables are:-

Array(Length) Type Description
sol(1+MR+NC) DOUBLE Primal solution values.
dsl(1+MR+NC) DOUBLE Dual solution values.
bas(1+MR+NC) INTEGER Code value for the basis status of each

variable in the final solution. Codes are
shown below

Codes for each entry in array BAS are:-

CODE MEANING
0 basic variable
-1 Variable is at its lower bound
+1 Variable is at its upper bound

bas may also be an INPUT argument supplying an advanced starting basis. This technique is
often used when the user system calls FortMP several times to solve similar problems. It is also
used when a basis has been read from the basis input file.

8



Chapter 5

FortMP-mex Library

The mex-library possesses functions in the following categories:

• functions to initiate and set up controls

• functions to read data from file to the external data interface

• functions to solve a problem and report the solution to the user

There are also many other functions (already described in the FortMP manual) enabling user
to manage the solution process in more detail, and to perform many miscellaneous tasks. Most
of these will be available in the next release of FortMP-mex library.

5.1 Functions to initiate execution and set-up controls

Entries include:

FMP BLDFMPC This function is used to initiate FortMP execution and set
defaults for all controls. Only the message call back is set
up enabling messages to be directed to matlab

FMP SPECMDC Enters a SPECS command over-riding the defaults set by
FMP BLDFMPC.

FMP SPECINC Reads the SPECS command-file (fortmp.spc) and stores it
internally to save repeated re-reading when the solver has
to be called a large number of times.

9



5.2 Functions to read data from file to the external data
interface

FMP MP2SIZC Performs the initial stage of input, establishing the dimensions of
the input model so that user can allocate space for the external
interface.

FMP LP2INPC Reads in an LP model from standard input data and converts it
to the external interface form - together with a starting basis if
specified.

FMP LPDINPC Does the same as LP2INPC and, additionally, reads in the dictio-
nary of row and column names together with look-up tables.

FMP QP2INPC reads in a QP model from standard input data and converts it
to the external interface form -together with a starting basis if
specified.

5.3 Functions to solve a problem and report the solution
to the user

FMP SUBLP2C This function supplies all problem data for an LP or MIP model,
solves the problem and returns the solution to the calling program
- matlab-users.

FMP SUBQP2C This function supplies all problem data for a QP or QMIP model,
solves the problem and returns the solution to the calling program
- matlab-users.

5.4 Call Specifications

5.4.1 Start-up Entries

FMP BLDFMPC

This function must be used before any other call to FortMP. It initialises FortMP
execution and sets defaults for all controls. Messages are directed to Matlab.

Prototype:-
function tctn = FMP_BLDFMPC()

Where:- tctn Is a return code
(zero if OK, non-zero locked or otherwise in error)

FMP SPECMDC

This function passes one SPECS command in order to change the value of some control
parameter, over-riding the default set by FMP BLDFMPC.

Prototype:-
function tctn = FMP_SPECMDC(spec)

10



Where:-spec is the text of a SPECS command
- tctn is the return-code
(zero if OK, non-zero otherwise)

FMP SPECINC

This function reads the SPECS command-file (fortmp.spc) and stores it internally to save
repeated re-reading when the solver has to be called a large number of times.

Prototype:-
function tctn = FMP_SPECINC()

Where:- tctn Is a return code
(zero if OK, non-zero otherwise)

5.4.2 Functions to read data from file to the external interface

FMP MP2SIZC

Performs the initial stage of input, establishing the dimensions of the input model so that
user can allocate space for the external interface.

Prototype:-
function [mr, nc, naij, nqij, nset, tctn] = FMP_MP2SIZC(spid)

FMP LP2INPC

Reads in an LP model from standard input data and converts it to the external interface form
- together with a starting basis if specified.

Prototype:-
function [aij, arow ,acol, upb, lob ,frhs ,flhs,cost, mitype, ...

sref ,sfun ,sbeg ,send ,koff, bas, tctn] = ...
FMP_LP2INPC(mr,nc,naij,nqij,nset,pname,spid)

FMP QP2INPC

Reads in a QP model from standard input data and converts it to the external interface form
- together with a starting basis if specified.

Prototype:
function [aij, arow, acol, qij ,qrow, qcol, upb ,lob ,frhs, flhs,...

cost, mitype , koff ,bas, tctn] = ...
FMP_QP2INPC(mr,nc,naij,nqij,pname,spid)

11



5.4.3 Functions to solve a problem and report solution to the user

Arguments used in this section are all described above in the External Data Interface. For all
these entries, argument BAS becomes an input (as well as an output), supplying the starting
basis when the SPECS command ’SSX START INPUT BASIS’ has been given.

FMP SUBLP2C

This function supplies all problem data for an LP or MIP model, solves the problem and
returns the solution to the calling program. This entry supplies all problem data for an LP or
MIP model, solves the problem and returns the solution to the calling program.

prototype:-
function [obj, sol ,dsl ,bas ,stsl, tctn] =...

FMP_SUBLP2C(mr,nc,naij,nset,aij, pname,spid, arow, ...
acol, upb,lob, frhs, flhs, cost ,mitype, sref, sfun,...
sbeg, send, koff,bas)

Note that when the number of sets is actually zero, the size NSET should have the value 1
on input. This is because some FORTRAN systems do not accept zero as a valid dimension-size.
Codes in MITYP determine if one set is actually present.

FMP SUBQP2C

This entry supplies all problem data for a QP or QMIP model, solves the problem and returns
the solution to the calling program.

prototype:-
function [obj, sol ,dsl, bas ,stsl ,tctn] = ...

FMP_SUBQP2C(mr,nc,naij,nqij,pname,spid,aij,arow, acol, qij ,...
qrow, qcol, upb ,lob, frhs, flhs, cost,mitype ,koff,bas)

12



Chapter 6

High Level Library Functions

These intended to illustrate basic usage of FortMP in matlab and to provide a user with a high
level interaction with FortMP

FMP READLPMODEL

Usage: [mr, nc, naij, nqij, nset,aij, ...
arow, acol, upb ,lob ,frhs ,flhs, cost , ...
mitype, sref, sfun ,sbeg,send ,koff,...
bas ,tctn] = FMP_ReadLPModel(filename)

Description: Reads an LP model in an mps file filename.

Input: model input filename

Output: - see manual

FMP READQPMODEL

Usage: [mr, nc ,naij, nqij, nset ,aij, arow ,acol, qij ...
qrow, qcol, upb, lob ,frhs,flhs ,cost, mitype ,...
KOFF ,bas, tctn] = FMP_ReadQPMODEL(filename)

Description: Reads a QP model

Input: model input filename

Output: see manual

FMP SOLVEMODELMPS

Usage: [obj, sol ,dsl ,bas ,stsl, tctn] ...
= FMP_SOLVEMODELMPS(filename,modelname,spid)

13



Description: Solves(minimizes) the model in the mps file filename

inputs :-
filename : mps filename
modelname : name of model
spid : identity of begin line -see manual

Outputs: see manual

FMP SOLVE

Usage : [obj, sol ,dsl ,bas ,stsl, tctn] = FMP_SOLVE(A,L,U,l,u,k,c)

Description: Solves(minimizes) a model entered in canonical form

Inputs:-
k is a scalar constant offset to the objective
c is an n- vector of the cost coefficients c1,c2,...cn.
x is an n- vector of the structural variables x1,x2,...xn.
L is an m-vector of lower right hand sides L1,L2,...Lm.
A is an m x n matrix of coefficients aij.
U is an m-vector of upper right hand sides U1,U2,...Um.
l is an n- vector of lower bounds l1,l2,...ln.
u is an n- vector of upper bounds u1,u2,...un.
mitype - see manual

Output - see manual

14



Chapter 7

Examples in Matlab

FMP READQPMODEL

Usage: [mr, nc ,naij, nqij, nset ,aij, arow ,acol, qij ...
qrow, qcol, upb, lob ,frhs,flhs ,cost, mitype ,...
KOFF ,bas, tctn] = FMP_ReadQPMODEL(filename)

Description: Reads a QP model

Input: model input filename

Output: see manual

tctn = FMP_BLDFMPC;
if(tctn ~= 0)

error(’FMP_BLDFMPC: FortMP failed to initialize’);
end

specs = sprintf(’INPUT FILE NAME(%s)’,filename);
tctn = FMP_SPECMDC(specs);

specs = sprintf(’MODEL NAME(%s)’,filename);
tctn = FMP_SPECMDC(specs);

spid = ’NOSPECS’; [mr, nc, naij, nqij, nset, tctn] = FMP_MP2SIZC(spid);

if(nqij == 0)
error(’Not a QP model - exiting’);

end

if(nset ~= 0)
error(’nset should be zero for QP - exiting’);

end pname = ’model’;

[aij, arow, acol, qij ,qrow, qcol, upb ,lob ,frhs, flhs, ...
cost, mitype ,KOFF ,bas, tctn] = FMP_QP2INPC(mr,nc,naij,nqij,pname,spid);

15



FMP SOLVEMODELMPS

Usage: [obj, sol ,dsl ,bas ,stsl, tctn] ...
= FMP_SOLVEMODELMPS(filename,modelname,spid)

Description: Solves(minimizes) the model in the mps file filename

inputs :-
filename : mps filename
modelname : name of model
spid : identity of begin line -see manual

Outputs: see manual

if length(filename) >8
error(’file name is too long - maximum of 8 characters’);

end

if exist(filename) ~=2
errstring= sprintf(’File %s: does not exist’,filename);
error(errstring);

end

tctn = FMP_BLDFMPC;

if(tctn ~= 0)
error(’FMP_BLDFMPC: FortMP failed to initialize’);

end

specs = sprintf(’INPUT FILE NAME(%s)’,filename);
tctn = FMP_SPECMDC(specs);

pname = modelname;
specs = sprintf(’MODEL NAME(%s)’,pname);
tctn = FMP_SPECMDC(specs);

if nargin <3
spid = ’NOSPECS’;

end

[mr, nc, naij, nqij, nset, tctn] = FMP_MP2SIZC(spid);

if (tctn ~= 0)
error(’TCTN is not zero’);

end

if(nqij == 0)
[mr, nc, naij, nqij, nset,aij, ...

16



arow, acol, upb ,lob ,frhs ,flhs, cost , ...
mitype, sref, sfun ,sbeg,send ,KOFF, bas ,tctn] = ...
FMP_ReadLPMODEL(filename);

FMP_SPECMDC(’MIP DUAL OFF’);
FMP_SPECMDC(’MIP PREP ON’);
FMP_SPECMDC(’MIP PRIORITY UP’);

[obj, sol ,dsl ,bas ,stsl, tctn] = FMP_SUBLP2C(mr,nc,naij,nset,aij,...
pname,spid,arow, acol, upb, lob, frhs, flhs, cost ,mitype, ...
sref, sfun, sbeg, send, KOFF,bas);

else

[mr, nc ,naij, nqij, nset ,aij, arow ,acol, qij, ...
qrow, qcol, upb, lob ,frhs,flhs ,cost, mitype ,...
KOFF ,bas, tctn] = FMP_ReadQPMODEL(filename);

tctn =FMP_SPECMDC(’INPUT QMATRIX FULL’); %SPECMDC

if(length(find(cost))==0)
% FortMP fix- Fallacy in reading QP when objective
% linear vector is zero So shrink frhs and flhs
% and reduce mr by 1
frhs = frhs(2:mr);
flhs = flhs(2:mr);
mr = mr-1;
arow = arow -1;

end

[obj, sol ,dsl, bas ,stsl ,tctn] = FMP_SUBQP2C(mr,nc,...
naij,nqij,pname,spid,aij,arow, acol, qij ,qrow, qcol,...
upb ,lob, frhs, flhs, cost,mitype ,KOFF,bas);

end

FMP SOLVE

Usage : [obj, sol ,dsl ,bas ,stsl, tctn] = FMP_SOLVE(A,L,U,l,u,k,c)

Description: Solves(minimizes) a model entered in canonical form

Inputs:-
k is a scalar constant offset to the objective
c is an n- vector of the cost coefficients c1,c2,...cn.
x is an n- vector of the structural variables x1,x2,...xn.
L is an m-vector of lower right hand sides L1,L2,...Lm.
A is an m x n matrix of coefficients aij.

17



U is an m-vector of upper right hand sides U1,U2,...Um.
l is an n- vector of lower bounds l1,l2,...ln.
u is an n- vector of upper bounds u1,u2,...un.
mitype - see manual

Output - see manual

BIG = exp(40);
[mr nc] = size(A); [arow acol aij]=find(A); naij = length(arow);
upb = u; lob = l; flhs = L; frhs = U; cost = c; nset = 0; sref = [];
sfun = []; sbeg = []; send = []; bas = zeros(1,1+mr+nc);
KOFF =k; pname = ’model’; spid = ’NOSPECS’;

tctn=FMP_BLDFMPC;

[obj, sol ,dsl ,bas ,stsl, tctn] = FMP_SUBLP2C(mr,nc,naij,nset,...
aij, pname,spid,arow, acol, upb, lob, frhs, flhs, cost ,mitype, ...
sref, sfun, sbeg, send, KOFF,bas);

7.1 Advanced examples

FMP EFF

This consists of an application that uses four different models detailed below.

0 5 10 15 20 25 30 35 40 45
1

1.5

2

2.5

3

3.5

 Risk

 R
etu

rn

 Mean Variance Frontier

Figure 7.1: Efficient Frontier Comparing Four Models

Usage: FMP_EFF

18



Description: Plots the effecient frontier for different models
Inputs: Requires

MEF.mps - continuous
Card.mps - discrete- cardinality
Lot.mps - Lot size constraints
Buy.mps - Buy-In constraints

For more information contact Manti Mendi - see address on manual

[Risk,Ret]=FMP_EFF_(1,’MEF.mps’,’MEF’,’NOSPECS’);
plot(Risk,Ret,’b.’); clear Risk Ret

hold on; [Risk,Ret]=FMP_EFF_(2,’Card.mps’,’Card’,’NOSPECS’);
plot(Risk,Ret,’g.’); clear Risk Ret

[Risk,Ret]=FMP_EFF_(3,’Lot.mps’,’Lot’,’NOSPECS’);
plot(Risk,Ret,’r.’); clear Risk Ret

[Risk,Ret]=FMP_EFF_(4,’Buy.mps’,’Buy’,’NOSPECS’);
plot(Risk,Ret,’k.’); clear Risk Ret hold off;

function [Risk,RetOpt]= FMP_EFF_(ModelType,filename,modelname,spid)
%[Risk,RetOpt]= FMP_EFF(ModelType,filename,modelname,spid)
%ModelType = 1 for MEF
% 2 for CARD
% 3 for LOT
% 4 for Buy In

if length(filename) >8
error(’file name is too long - maximum of 8 characters’);

end if exist(filename) ~=2
errstring= sprintf(’File %s: does not exist’,filename);
error(errstring);

end
tctn = FMP_BLDFMPC; %Initialize fortMP

if(tctn ~= 0)
error(’FMP_BLDFMPC: FortMP failed to initialize’);

end

specs = sprintf(’INPUT FILE NAME(%s)’,filename);
tctn = FMP_SPECMDC(specs);

pname = modelname;
specs = sprintf(’MODEL NAME(%s)’,pname);
tctn = FMP_SPECMDC(specs);

if nargin <3
spid = ’NOSPECS’;

end

19



[mr, nc, naij, nqij, nset, tctn] = FMP_MP2SIZC(spid);
if (tctn ~= 0)

error(’TCTN is not zero’);
end

[mr, nc ,naij, nqij, nset ,aij, arow ,acol, qij, ...
qrow, qcol, upb, lob ,frhs,flhs ,cost, mitype ,...
KOFF ,bas, tctn] = FMP_ReadQPMODEL(filename);

tctn =FMP_SPECMDC(’INPUT QMATRIX FULL’); %SPECMDC

if(length(find(cost))==0)
% FortMP fix- Fallacy in reading QP when objective linear vector is zero
%So shrink frhs and flhs and reduce mr by 1

frhs = frhs(2:mr);
flhs = flhs(2:mr);
mr = mr-1;
arow = arow -1;

end

N=100; cnt =1;
switch ModelType
case 1

Returns = aij(find(arow==1)); % coeffecients corresponding to one form
%the return vector except for Lots !
Ret=linspace(max(Returns),min(Returns),N);
for u = 1:N

flhs(1)= Ret(u);
[obj, sol ,dsl, bas ,stsl ,tctn] = FMP_SUBQP2C(mr,nc,naij,nqij,...
pname,spid,aij,arow, acol, qij ,...

qrow, qcol, upb ,lob, frhs, flhs, cost,...
mitype ,KOFF,bas);

if (stsl ==3)
RetOpt(cnt)=dot(sol(2+mr:1+mr+nc),Returns); Risk(cnt)=obj;
cnt = cnt +1;

end

end
case {2,4}

Returns = aij(find(arow==1)); % coeffecients corresponding to one
%form the return vector except for Lots !
Ret=linspace(max(Returns),min(Returns),N);
for u = 1:N

flhs(1)= Ret(u);

FMP_SPECMDC(’IPM RESTART ON’);
FMP_SPECMDC(’MIP RESTART ON’);

20



FMP_SPECMDC(’MIP PREP ON’);
FMP_SPECMDC(’MIP PRIORITY UP’);
[obj, sol ,dsl, bas ,stsl ,tctn] = FMP_SUBQP2C(mr,nc,naij,nqij,...
pname,spid,aij,arow, acol, qij ,...

qrow, qcol, upb ,lob, frhs, flhs, cost,...
mitype ,KOFF,bas);

if (stsl ==5)
RetOpt(cnt)=dot(sol(2+mr:1+mr+nc/2),Returns); Risk(cnt)=obj;
cnt = cnt +1;

end
end

case 3
Lots = aij(find(arow==2));
Returns = aij(find(arow==1))/Lots(1);
Ret=linspace(max(Returns),min(Returns),N);

for u = 1:N
flhs(1)= Ret(u);

[obj, sol ,dsl, bas ,stsl ,tctn] = FMP_SUBQP2C(mr,nc,naij,nqij,pname,...
spid,aij,arow, acol, qij ,...

qrow, qcol, upb ,lob, frhs, flhs, cost,...
mitype ,KOFF,bas);

if (stsl ==5)
RetOpt(cnt)=dot(Lots(1)*sol(2+mr:1+mr+nc),Returns);
Risk(cnt)=obj;
cnt = cnt +1;

end

end
end

21



Chapter 8

SPECS Commands for Control of
Solver and Data Input

The text-file ’fortmp.spc’ supplies run-time controls - that is SPECS commands - to the FortMP
solver and data input subroutines. This section gives an introduction to SPECS command syntax
and describes the most important and frequently used commands. Additional commands are
described in the FortMP manual and extensions.

SPECS commands may be introduced by using the entries SPECMD and SPECMDC,
which are described earlier. Commands introduced in this way are superseded by commands
entered at run-time on the file fortmp.spc. There is no difference in syntax, and any command
may be entered by either method.

In all the command syntax used below the symbols ’ <’, ’>’ are used to bracket an item
supplied by the user. Character ’/’ is used to specify alternatives. Optional items are enclosed
by square brackets ’[’ and ’]’.

8.1 Run-time SPECS control file. The ’SPID’ parameter

File ’fortmp.spc’ is split into sections permitting different commands to apply in multiple calls
to the solver and data entry routines. A section is delimited by the following two lines:

BEGIN [(sectid)]
END

where ’sectid’ is a string of up to 8 characters, blank if omitted, that gives an identifier to each
section. ’END’ is not necessarily the end of the file but merely terminates the section, and any
lines between ’END’ and the next ’BEGIN’ (or end of file) are ignored.

In order to select a particular section the parameter SPID is employed when making a call to
any solver or data entry routine. The following special values for ’SPID’ should be noted:

22



SPID Meaning
Blank Select the first section. If the first section is ALL

then select the first and second sections
’NOSPECS’ Bypass SPECS-command input altogether.All controls re-

main at previous settings.
’DEFAULT’

’ALL’ Has a special meaning and should never be used for SPID

8.2 Most Important SPECS commands

Command Default
BEGIN [(<sectid>)] Section ID is blank

END

The above commands begin and end each separate section of the SPECS file (fortmp.spc). Nor-
mally only one section is needed and section identity (with surrounding parentheses) is omitted.
Multiple sections are used for systems in which FortMP is called as a sub-system to solve many
different models.

Command Default string
MODEL NAME (<modname>) Model

This command supplies a default for the names of all input, output and local scratch files to be
used in the run. An extension is added according to file type.

Command Default String
INPUT FILE NAME (<filename>) <modname>.MPS
BASIS FILE NAME (<filename>) <modname>.BAS

OUTPUT FILE NAME (<filename>) <modname>.RES
LOG FILE NAME (<filename>) <modname>.LOG

These commands assign a special name to the indicated file, where ¡modname¿ represents the
model name. In the case of ’BASIS ’ the filename applies to input only and not to output.

Command Default String
DIRECTORY (<dirname>) Empty
PATH NAME (<dirname>)

These two alternative commands supply a prefix added to all filenames other than those intro-
duced with an explicit ’FILE NAME’ command.

Command Default Action
MINIMIZE This is the default
MAXIMIZE

These commands specify the sense of optimsation.

Command Default Action
QMATRIX <FULL—HALF> Full Q-matrix

23



This command specifies whether the Q-matrix is supplied in full, or has only the diagonal
entries and one half - the other half being deduced by symmetry. It applies only to library calls
SUBQP2 and SUBQP2C, and will not be needed if the model is read previously with INPQP2.
INPQP2 sets the command from the header of the quadratic objective section (QMATRIX implies
FULL - QDATA and QUADS imply HALF).

Command Default
Option SCALE [<ON/OFF>] ON

This command determines if scaling is to be performed.

Command Default
Option PRESOLVE [<ON/OFF>] OFF

This command determines if PRESOLVE is to be executed.

Command Default Action
ALGORITHM PRIMAL This is the default
ALGORITHM DUAL
ALGORITHM IPM

One of these commands is used to specify the primary solution algorithm for the continuous
LP problem. ’PRIMAL’ is the default and need not be specified.

Command Default Minimum
MAXIMUM SSX ITERATIONS = <intval> 50000 1
MAXIMUM IPM ITERATIONS = <intval> 80 1

MAXIMUM MIP <INTEGER SOLUTIONS> 300 1
/INTSOL> = <intval>

MAXIMUM MIP NODES = <intval> 50000 1
MAXIMUM MIP TIME = <realval> 50000.0 0.0

These commands specify terminal limits on each major algorithm. When a limit is reached a
’SAVE’ is made before exit in order to enable a restart when it is desired to continue the run.

Command Default Minimum
SSX SAVE FREQUENCY = <intval> 10 (each 10th re-inversion) or 0 0
IPM SAVE FREQUENCY = <intval> 10 (each 10th iteration) or 0 0
MIP SAVE FREQUENCY = <intval> 500 (each 500th node) or 0 0

These commands specify the frequency for making a SAVE in each major algorithm. Zero
implies that no regular SAVE is to occur. Default settings are 10, 10, and 500 when FortMP is
used as a stand-alone program, and zero (i.e. no SAVE) when using the library.

Command Default Option
SSX START RESTART [<ON/OFF>] OFF

IPM RESTART [<ON/OFF>] OFF
MIP RESTART [<ON/OFF>] OFF

24



These commands specify whether a RESTART is to be invoked for the input or for each
major algorithm. The INPUT procedure always saves the lengthy ’MPS’ stage output to permit
rapid restart . For SSX algorithms ’RESTART’ is an alternative to other starting basis options.

Command Default Action
SSX START CRASH This is the default

SSX START INPUT BASIS
SSX START UNIT BASIS

These commands select the mechanism for setting up the starting basis when the main algo-
rithm is PRIMAL or DUAL. ’SSX START RESTART ’ can also be used.

In the case of a library call to the solver ’SSX START INPUT BASIS’ invokes use of array
BAS to provide the starting basis.

Command Default option
MIP PREPROCESS [< ON/OFF/ROOT ONLY >] OFF

This command controls the use of MIP pre-processing. Option ’ON’ invokes execution at the
root and at every other node in the Branch and Bound tree.

Command Default option
MIP PRIORITY UP [<ON/OFF>] OFF

This command is an important control on the branching in MIP. Option ’ON’ causes variable
selection to consider fractional values and node selection to choose direction in the UP sense by
preference to the DOWN sense. The feature is very useful for models such as allocation, with a
large predominance of simple SOS-type constraints.

Command Default option
GENERATE CUTS [<ON/OFF/ROOT ONLY>] OFF

’ON’ activates the cut-generation procedures and the application of strong cuts before and
during Branch and Bound (See manual section 6.7.3). With ROOT ONLY the feature is invoked
only for the root node of the branch and bound tree.

8.3 External Interface Save and Restart commands

FortMP provides a facility for the user to dump the external data interface, together with its
model descriptors, onto a file for separate use. This file can act as an input for restarting (saving
the time required for model generation), or it can be submitted for testing purposes to the
supplier without compromising original source data. Should there be any difficulty in executing
the solver, the dump file enables the precise situation to be duplicated, alternatives can be tried
out, and the cause of any eventual bug can be investigated. The dump-file can be in binary or
in ASCII form.

The dump-file is named <modname>.XFC for binary form, ¡modname¿.XFA for ASCII form,
where <modname> is the model name.

The commands for this are given below.

25



Command Default option
EXTERNAL SAVE [<ON/OFF/ASCII>] OFF

This command activates the save-dump in library routines SUBLP2, SUBQP2, SUBLP2C
and SUBQP2C. The file is written immediately after entry and reading the SPECS commands.

Command Default option
EXTERNAL RESTART [<ON/OFF/ASCII>] OFF

This command inputs the model from the save-dump in library routines INPLP2, INPQP2,
INPLP2C and INPQP2C.

26



Bibliography

[1] AMPL. http://www.ampl. 2003.

[2] Gautam Mitra email: Gautam.Mitra@brunel.ac.uk. Lp,mip,qp,qmip,sp lectures and work-
shop notes. 2003.

[3] FortMP. www.optirisk-systems.com/documents.asp. 2003.

[4] FortSP. http://www.optirisk-systems.com/documents.asp. 2003.

[5] C Lucas. (B) G Mitra, T Kyriakis. A Review of Portfolio Planning: Models and Systems,
(2003) an invited chapter, in:Advances in Portfolio Construction and Implementation, S E
Satchell, A E Scowcroft (Eds.) ,pp1-39. Butterworth & Heinemann, Oxford.

[6] N Koutsoukis B Dominguez-Ballesteros G Mitra, C Lucas. The SPInE stochastic program-
ming system - To appear in special issue - Application of stochastic programming, editors:
S.Wallace, W.Ziemba. 2004.

[7] G. Mitra (B) I. Maros. Simplex Algorithms,Chapter 1 in Recent Advances in Linear and
Integer Programming,J. Beasley (editor),. Oxford University Press, 1968.

[8] G. Mitra (J) I. Maros. Strategies for creating advanced bases for large scale linear program-
ming problems. INFORMS Journal on Computing, USA, 10:248–260, 1998.

[9] B. Nygreen(J) K. Kularajan, G. Mitra. F.Ellison. Constraint classification, proprocessing
and a branch and relax approach to solving mixed integer programming models. Interna-
tional Journal of Mathematical Algorithms, pages 1–45, 2000.

[10] C Lucas N Jobst, M Horniman and G Mitra. (J). Computational aspects of alternative
portfolio selection models in the presence of discrete asset choice constraints. Quantitative
Finance, 1:1–13, 2001.

[11] OPTIRISK. http://www.optirisk-systems.com.

[12] OSP. http://osp-craft.com.

[13] C.A.Poojari G.Mitra. (J) S.A.MirHassani, C.Lucas. An application of lagrangean relaxation
to a capacity planning problem under uncertainty. Journal of Operational Research Society,
pages 1256–1266.

[14] Alan Scowcroft and James Sefton. Enhanced indexation, (2003) chapter 4, in:Advances in
Portfolio Construction and Implementation, S E Satchell, A E Scowcroft (Eds.) ,pp95-124.
Butterworth & Heinemann, Oxford.

[15] Maximal Software. http://www.maximal-usa.com. 2003.

[16] WEBOPT. www.webopt.org/default.asp.

27




